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Abstract

This thesis investigates how advanced measurement methodologies and sensor in-
formation processing can elevate the fidelity of digital twin representations in both
structural and environmental domains. By integrating Unmanned Aerial Vehicles
(UAVs) and underwater vehicles (UUVs) as data-collection platforms, the disser-
tation focuses on three core challenges: (1) accurate navigation in GNSS-denied
settings via monocular and visual–inertial odometry (VIO), (2) automated defect
detection in civil infrastructures using deep learning, and (3) scalable marker-based
tracking for 3D-scaled masonry models.

First, the work provides an in-depth analysis of monocular Visual Odometry
(VO), comparing classical geometry-based approaches with modern deep-learning
methods. Emphasis is placed on how feature selection, sensor fusion, and scale es-
timation influence drift and reliability. A new measurement-uncertainty approach
quantifies error propagation in VO pipelines, linking theoretical measurement prin-
ciples to UAV and underwater applications. In over 420 simulated UAV flights,
selective algorithms (e.g., Harris and AKAZE) reduce drift by up to 42% over base-
line techniques. Sensitivity analyses further show that refining environmental and
sensor factors—such as IMU noise or ground-plane ambiguities—can achieve an ad-
ditional 30% reduction in positional uncertainty.

Second, the thesis develops deep learning pipelines for defect segmentation and
crack verification. A YOLO-based crack detection model achieves F1 scores above
92% on a large-scale image dataset, enabling rapid UAV inspections of civil struc-
tures. Complementary triplet-loss verification further refines crack evolution moni-
toring, cutting false positives by 35% when tracking fracture propagation over time.

Third, a low-cost marker-based system is introduced for scaled masonry arches
and structural prototypes, where 19 fiduciary markers continuously monitor block
displacements. Experimental tests show orientation measurement expanded uncer-
tainty down to ±0.29°, nearly half that of earlier marker-based systems. Finally,

v



Abstract vi

the research extends digital twin applications to marine environments, combining
a Gated Recurrent Unit model with over 20,000 wave observations. Wave-height
forecasts exhibit a Pearson correlation up to 0.95, reducing predictive errors by 30%
relative to baseline models.

Collectively, these contributions demonstrate how rigorous measurement model-
ing, sensor data fusion, and deep learning–assisted defect detection can significantly
enhance the reliability of digital twins. By quantifying uncertainties, integrating
diverse sensing strategies, and validating on real-world platforms, this thesis lays a
robust groundwork for next-generation, high-precision digital twin systems.



Chapter 1

Introduction and Theoretical
Foundations

In the era of digital transformation, the concept of digital twin has emerged as
a revolutionary paradigm, enabling monitoring, simulation, and analysis of physical
systems through their digital counterparts. A digital twin is a virtual representation
of a physical object, system, or process that integrates data with advanced models
and analytics to mimic its physical counterpart’s behavior and state [1]. These digi-
tal twin serve as dynamic and intelligent systems that continuously evolve alongside
their physical counterparts, offering unprecedented insights and decision-making ca-
pabilities. By connecting the physical and virtual realms through a seamless flow of
data, digital twin enable predictive, prescriptive, and descriptive analyses that facil-
itate more effective management and optimization of systems [2]. This dissertation,
titled "Measurement and Sensor Information Processing for digital twin," investi-
gates the pivotal role of measurement technologies and sensor information process-
ing in advancing digital twin applications. By integrating concepts from structural
health monitoring (SHM), unmanned aerial vehicles (UAVs) or Unmanned Under-
water Vehicles (UUVs), deep learning, and visual localization, this work provides
a cohesive framework for leveraging sensor data to enhance the fidelity, reliability,
and functionality of digital twin.

Digital twin rely on high-fidelity data to replicate physical systems in a virtual
environment. This work develop some research by integrating multiple technological
advancements to enhance digital twin accuracy, robustness, and applicability.

SHM serves as the foundation by enabling continuous assessment of civil and
marine infrastructure, ensuring that the digital twin accurately reflects structural

1



Introduction and Theoretical Foundations 2

Figure 1.1: In this AI-generated scenario picture, a UAV and ground robot collaborate to inspect
a bridge, integrating real-time sensor fusion and AI-driven analysis. The digital twin updates
dynamically, enabling predictive maintenance and automated anomaly detection for infrastructure
resilience.

conditions (as shown as scenario in Figure 1.1). UAVs/UUVs play a crucial role in
this process by providing automated, high-resolution data collection in areas that
are difficult to access, such as bridges, dams, and underwater structures.

To efficiently process and interpret the vast amounts of sensor data acquired
from UAVs/UUVs , deep learning techniques are applied for automated damage
detection, crack segmentation, and anomaly classification. These machine learning
models improve defect recognition, reducing manual inspection errors and increasing
detection precision.

Additionally, visual localization techniques, including monocular VO and sen-
sor fusion, enhance UAV/UUV navigation in GNSS-denied environments, such as
tunnels and underwater structures. By ensuring precise UAV/UUV positioning,
these techniques enable accurate spatial mapping of infrastructure within the dig-
ital twin [3]. As the backbone of digital twin technology, sensor-based data acqui-
sition and processing are indispensable for ensuring the accurate representation of
the physical system in its digital counterpart [4].
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1 Integrating Measurement and UAV/UUV Data for Digi-
tal Twins

The advancement of digital twin relies on a structured integration of data acquisi-
tion, processing, and interpretation. This framework facilitates precise and dynamic
representations of physical systems, with a primary focus on structural health moni-
toring and environmental analysis, leveraging robotics as a key enabling technology.
To introduce the research component clearly, it is necessary to define its role and
objectives. Each research component forms a crucial link in a structured chain,
transforming raw data into actionable insights. This section outlines how intercon-
nected methodologies, which will be mentioned, collectively enhance the reliability
and applicability of digital twin models.

1.1 Data Acquisition and Sensor Integration

The foundation of digital twins begins with precise measurement and data ac-
quisition. In structural health monitoring, sensors such as RGB cameras, LiDAR,
and inertial measurement units (IMUs) are deployed on UAVs, mobile robots, and
other autonomous systems to be captured in the real world. However, the quality
and usability of this data depend on the accuracy and reliability of these sensors.
Measurement uncertainty, environmental conditions, and sensor calibration play a
significant role in determining the fidelity of the acquired data.

For example, monocular visual odometry (VO) is used to estimate the movement
and position of UAVs and mobile robots in environments where GNSS signals are
unreliable. However, Evaluating the uncertainties is essential, as they contribute
directly to the reliability of geometrical measurements for structural monitoring. To
bridge the gap between localization and its application in structural monitoring,
position estimates must be mapped onto the monitored structures while accounting
for these uncertainties. This requires sensor fusion techniques incorporating IMUs
and altimeters, which enhance trajectory estimation and ensure the positional data
accurately reflects the structural environment in digital twin models.

Another critical aspect of data acquisition is anomaly detection. When UAVs and
mobile robots perform structural inspections, deep learning models process high-
resolution images to detect cracks and other defects. Optimizing data acquisition
entails improving measurement accuracy, minimizing noise, selecting appropriate
sensors, and ensuring that data is contextually relevant for structural monitoring and
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localization tasks. This process enhances the quality and reliability of inputs used in
subsequent computational processes, ultimately improving digital twin fidelity and
usability.

1.2 Data Processing and Feature Extraction

Once raw data is collected, it must be processed into a usable format. Feature
extraction is the next link in the chain, where relevant information is isolated from
sensor outputs. In monocular visual odometry, this involves detecting and matching
keypoints between frames. Various algorithms such as ORB and AKAZE are eval-
uated to determine which provides the most stable feature tracking under varying
lighting and environmental conditions.

In structural monitoring, deep learning-based segmentation techniques convert
UAV- and robot-acquired images into meaningful data points. These methods, such
as YOLO-based crack segmentation, are trained to recognize and classify damage
patterns. The efficiency of these techniques is highly dependent on the quality of
extracted features. Poor feature matching in odometry or suboptimal segmentation
in structural analysis can introduce significant errors, leading to unreliable digital
twin representations.

Another key component in data processing is uncertainty quantification. All sen-
sor measurements contain inherent noise, and these uncertainties propagate through
processing pipelines. To address this, uncertainty models are developed to quantify
confidence in localization results.

1.3 Digital Twin Representation and Predictive Analytics

After feature extraction and uncertainty assessment, the processed data must
be integrated into a dynamic digital twin model. Digital twins require continuous
updates, meaning data must not only be captured and processed but also seamlessly
fused into an evolving representation of the physical structure.

For example, in maritime applications, significant wave height predictions are
incorporated into digital twin models for ocean monitoring. These predictions rely
on recurrent neural networks trained on historical and real-time wave data. Sim-
ilarly, in UAV and robot navigation, continuously updated pose estimations from
visual-inertial odometry contribute to real-time localization accuracy.

In structural health monitoring, predictive analytics plays a crucial role. Deep
learning models track the evolution of detected cracks over time, analyzing changes
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Figure 1.2: Digital Twin Data Integration Pipeline: A streamlined flow from multi-sensor acqui-
sition and feature extraction through sensor fusion and uncertainty quantification, leading to a
continuously updated digital twin with predictive analytics and calibration feedback.

in width, length, and propagation patterns. By integrating these evolving mea-
surements into a digital twin, engineers can predict potential failure points and
proactively schedule maintenance interventions.

Additionally, marker-based tracking systems provide an alternative approach to
monitoring small-scale structures. By using optical markers and camera-based pose
estimation, precise displacement measurements are captured. These datasets con-
tribute to the calibration and validation of large-scale structural monitoring frame-
works.

A complete digital twin system relies on multiple sources of data to enhance
measurement reliability and structural assessment. By continuously refining data
acquisition strategies, the system adapts to identified anomalies and data gaps,
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ensuring comprehensive data collection.
For example, visual-inertial odometry improves UAV and mobile robot naviga-

tion, providing crucial localization data for accurate structural monitoring. Likewise,
in marine environments, optical imagery aids in underwater mapping, contributing
to a more detailed representation of submerged structures. Ultimately, the effective-
ness of a digital twin hinges on the seamless integration, As shown in Fiiure. 1.2,
each element—data acquisition, feature extraction, uncertainty modeling, and pre-
dictive analytics—forms a necessary part of the broader system. The transition
from raw sensor readings to actionable insights in a digital twin environment is not
a single-step process but rather a continuous feedback loop where each layer refines
and enhances the next. This structured approach ensures that digital twins remain
not just static models but dynamic, evolving representations capable of real-time
decision-making and long-term predictive analysis.

To provide a context, this dissertation proposes technical solutions to specific
challenges, structured according to the components presented in Figure 1.2:

• Visual Localization and Odometry: Ensuring reliable localization and nav-
igation in GNSS-denied environments is a challenge for UAV- and UUV-based
infrastructure monitoring. In environments such as tunnels, enclosed indus-
trial sites, offshore platforms, and underwater structures, traditional satellite-
based positioning is unreliable, necessitating alternative localization strategies.
This research focuses on the development and evaluation of monocular visual
odometry (VO) and visual-inertial odometry (VIO) techniques to improve lo-
calization accuracy for autonomous inspection systems operating within a dig-
ital twin framework, where precise localization plays a crucial role in ensuring
the accurate representation of monitored structures. Localization techniques,
particularly visual odometry, are essential for maintaining spatial consistency,
integrating real-world positional data, and reducing uncertainty in digital twin
applications. A primary objective of this work is to quantify and mitigate the
measurement uncertainties associated with monocular VO. While VO provides
an effective means of estimating position and orientation by analyzing sequen-
tial images, it suffers from scale ambiguity, feature detection inconsistencies,
and drift accumulation over time. This study systematically assesses feature
extraction methodologies (e.g., ORB, AKAZE) and sensor fusion approaches,
determining their impact on VO accuracy in UAV/UUV-based inspections.
The integration of inertial measurements (IMUs) and altimeters is explored to
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enhance VIO robustness, reducing cumulative drift and improving long-term
localization reliability. Furthermore, this research introduces a measurement
uncertainty model tailored for UAV/UUV localization within digital twin rep-
resentations. Unlike conventional VO studies that focus solely on localization
performance, this work assesses the confidence levels of VO-derived positional
estimates, ensuring that data integrated into the digital twin meets metrological
standards. This model enables the quantification of localization error propa-
gation, providing a systematic way to enhance the spatial fidelity of digital
twin applications. Additionally, this study extends VO/VIO methodologies to
mobile robotic platforms and underwater navigation, investigating their adapt-
ability to different operational contexts.

• UAVs/UUVs and Deep Learning for Civil Structural Monitoring: Tra-
ditional infrastructure monitoring methods face significant limitations, includ-
ing high costs, inefficiencies, and the risk to human operators. To address
these challenges, this research integrates UAVs and UUVs as autonomous sens-
ing platforms within a digital twin framework, focusing on their role in real-
time structural health monitoring. Unlike generic digital twin applications, this
study emphasizes high-fidelity data acquisition, defect classification, and uncer-
tainty quantification, ensuring that UAV/UUV-based observations contribute
reliably to the evolving digital twin model.A key contribution of this work is
the development and validation of deep learning-driven defect detection - prac-
tically cracks on concrete - techniques that operate efficiently in UAV/UUV-
acquired imagery. Using advanced segmentation models like YOLO and triplet
loss-based learning, this research enhances the ability to detect, classify, and
track structural defects over time, minimizing false detections while improving
localization accuracy. The integration of monocular visual odometry and sen-
sor fusion further refines the position estimation of UAV/UUV-acquired data
in GNSS-denied environments, a critical aspect that enhances the spatial con-
sistency of the digital twin model.

• Marker-Based Tracking for Structural Monitoring: Accurate and cost-
effective tracking systems are essential for creating and maintaining digital twin
of structural systems. A digital twin relies on continuous measurement data
to provide insights into structural stability, defect progression, and predictive
maintenance. However, assessing the stability of buildings and infrastructure
often requires extensive measurements, which are used by specialists to analyze
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structural integrity and identify the causes of cracks or other anomalies. In real-
world applications, obtaining sufficient data for these assessments is challenging
due to limited access, high costs, and the complexity of structural behavior.
To overcome these challenges, AI-driven analysis techniques are increasingly
explored to assist specialists in diagnosing structural issues. However, AI mod-
els require large datasets for training, which are difficult to obtain from real
buildings due to practical constraints. As a solution, researchers commonly use
3D-scaled models to generate controlled datasets for AI training and valida-
tion. Structural tracking plays a critical role in the digital twin update process,
ensuring that changes in monitored structures are accurately represented.

Traditional measurement systems for structural tracking often rely on expen-
sive equipment, limiting accessibility and scalability. To address this limitation,
this dissertation proposes a low-cost marker-based tracking system that uses
DeepTag and ArUco markers for accurate and scalable structural monitoring.
These marker-based tracking techniques provide a cost-effective alternative for
tracking structural changes, enabling efficient data collection while maintaining
measurement accuracy. Scaled models serve as a test case for evaluating the
developed methods, demonstrating their applicability in real-world monitoring
scenarios. The proposed system focuses on structural tracking for digital twin
updates, ensuring accurate representation of monitored structures. However,
deploying marker-based tracking in large-scale infrastructure poses additional
challenges, particularly regarding the strategic placement of markers at signifi-
cant monitoring points to ensure effective data acquisition. By addressing these
scalability challenges, marker-based tracking can become a viable solution for
enhancing digital twin models, improving predictive modeling, and supporting
SHM.

• Marine Environmental Analysis: Digital twin technology is essential in en-
vironmental monitoring by integrating real-time data and predictive models to
support decision-making in marine environments. The primary objective of this
research is to develop a data-driven digital twin framework that enhances the
monitoring and forecasting of critical oceanographic parameters, particularly
Significant Wave Height (SWH), vital to maritime operations, coastal infras-
tructure, and offshore safety. To achieve this, machine learning-based predictive
modeling is employed, leveraging historical and real-time sensor data collected
from various maritime observatories, including the EMSO-OBSEA observa-



Introduction and Theoretical Foundations 9

tory, Tarragona, and Barcelona monitoring stations. The core of this approach
involves using Gated Recurrent Unit (GRU) neural networks, which are well-
suited for time-series forecasting, to predict wave height variations and identify
potential anomalies in ocean conditions. For instance, in maritime digital twin
applications, forecasting Significant Wave Height (SWH) is critical for ship
routing optimization, coastal erosion analysis, and offshore energy planning.
The developed framework processes real-time in-situ measurements alongside
historical datasets to generate accurate SWH predictions, thus improving mar-
itime situational awareness and operational resilience.

The research follows a hierarchical and interconnected approach, ensuring that
sensor-based measurements, data processing, and predictive models contribute co-
hesively to a robust digital twin framework. The overarching goal is to bridge the
gap between theoretical advancements and real-world implementation, making digi-
tal twins metrologically reliable, computationally efficient, and adaptable to diverse
structural and environmental monitoring applications.

By structuring these research objectives within a unified measurement-driven
vision, this dissertation contributes to the evolution of digital twins from static
digital models to real-world, self-updating intelligent systems capable of predictive
analysis, decision-making, and structural health assessment with quantified accuracy
and uncertainty.

2 Structure of the Dissertation

This dissertation is structured to progressively build upon the foundational con-
cepts and methods, culminating in a synthesis of findings and recommendations for
future research. Each chapter focuses on a specific aspect of the research, detailing
both theoretical foundations and practical implementations:

• Chapter 2: Visual Localization and Odometry - This chapter investigates
monocular VO and VIO techniques for UAV/UUV navigation in GNSS-denied
environments. It addresses key challenges such as scale estimation, feature
tracking, and drift compensation, integrating sensor fusion with IMUs,
LiDAR, and depth cameras to improve localization accuracy. Additionally,
it presents an uncertainty modeling framework to quantify localization
errors and evaluates the system’s performance in real-world UAV/UUV navi-
gation scenarios.
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• Chapter 3: UAVs/UUVs and Deep Learning for Structural Monitor-
ing - This chapter explores the use of UAVs and UUVs equipped with high-
resolution imaging sensors for SHM. It introduces deep learning-based method-
ologies, including crack detection using YOLO segmentation models,
triplet loss-based verification for structural defects, and transfer learn-
ing approaches for automated infrastructure assessment. Additionally, it dis-
cusses the integration of UAVs/UUVs with Internet of Things (IoT) technologies
for real-time monitoring applications.

• Chapter 4: Marker-Based Tracking for Structural Monitoring - This
chapter details the development and implementation of low-cost marker-
based tracking systems for monitoring structural displacements and defor-
mations. It presents the use of DeepTag and ArUco markers for high-
precision tracking in 3D-scaled masonry models, highlighting their potential
for SHM in both laboratory and real-world environments. The chapter also
discusses the challenges of marker placement in large-scale infrastructure and
proposes solutions for future deployment.

• Chapter 5: Environmental Monitoring for Marine Digital Twins - This
chapter explores the integration of digital twin technology in marine environ-
ments. It presents a predictive modeling framework for forecasting significant
wave height, using machine learning and in-situ sensor data from vari-
ous maritime observatories. The chapter discusses data preprocessing, model
training, and validation methodologies while also addressing challenges such
as data gaps, outlier detection, and environmental variability in digital twin
applications for marine monitoring.

• Chapter 6: Conclusion and Future Directions - This chapter synthesizes
the key findings of the dissertation, discussing the impact of integrating deep
learning, marker-based tracking, and visual localization within the digital twin
framework. It outlines future research directions, including advancements in
real-time data processing, multi-sensor fusion, and the application
of digital twin in environmental monitoring and smart infrastructure
development.

By addressing the multifaceted challenges of measurement and sensor informa-
tion processing, this dissertation contributes to advancing digital twin technologies,
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ultimately fostering safer, more efficient, and adaptive systems across diverse ap-
plications. It sets the stage for exploring new dimensions in digital twin evolution,
encouraging a continuous cycle of innovation and application refinement.
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Chapter 2

Advances in Monocular Visual
Odometry

This chapter outlines the advances and challenges in monocular VO, highlighting
how various works have progressively tackled measurement accuracy, robustness,
and scalability issues-particularly for digital twin applications.

In “Survey and Research Challenges in Monocular Visual Odometry” [5], offers
a comprehensive taxonomy of both classical and emerging (deep learning–based)
monocular VO techniques. Beyond identifying commonly known issues—such as
scale ambiguity and ground plane limitations-it pinpoints new research gaps in han-
dling non-static scenes, integrating additional sensing (e.g., IMUs), and applying
deep learning for feature detection. Crucially, it emphasizes how reduced hardware
dependencies (via software-driven or learned methods) could facilitate more acces-
sible, cost-effective VO systems.

In “From Pixels to Precision: A Survey of Monocular Visual Odometry in Digital
Twin Applications” [6], extends the survey perspective to digital twin–specific sce-
narios, dissecting feature tracking and scale estimation challenges when integrating
VO into structural monitoring or industrial digital twins. The paper highlights how
LiDAR or depth-camera data can be fused with monocular VO to strengthen met-
ric fidelity, ensuring high-precision updates in digital twins. Its main contribution
is a measurement-centric viewpoint, showing how improved VO accuracy directly
enhances the reliability of digital twin models.

In “Measurement Uncertainty Model for Relative Visual Localization of UAV by
a Monocular Camera” [7], proposes the first uncertainty model tailored for monocu-
lar VO in UAV navigation, bridging theoretical error propagation (via the “Guide to

13
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the Expression of Uncertainty in Measurement”) with practical flight tests. By com-
paring multiple feature detection algorithms, it quantifies how algorithmic choices
affect positional uncertainty, thus linking measurement theory to real-world UAV
operations.

In “Sensitivity Analysis of a Visual Inertial Odometry Based Navigation System
for UAV” (to present at IEEE I2MTC 2025), delivers an in-depth analysis of how
environmental factors (e.g., lighting, scene texture) and sensor uncertainties (IMU
noise, camera calibration) shape the performance of visual-inertial odometry (VIO).
Validated by extensive simulations, it ranks which parameters most significantly
degrade (or improve) VIO accuracy, offering practical guidelines for UAV system
designers aiming to enhance navigation reliability.

In “SUBVO Dataset: Analyzing Feature Extraction for Underwater Monocular
Visual Odometry” (to present at IEEE I2MTC 2025), introduces a novel dataset
specifically for underwater VO, a domain often overlooked due to poor visibility
and color distortion. By applying advanced preprocessing (e.g., white balancing,
color cast reduction) and a genetic algorithm–based optimization for RANSAC’s
inlier threshold, this work demonstrates robust feature matching despite underwa-
ter turbidity and significantly reduces pose estimation errors in underwater robotic
navigation.

Collectively, these five investigations chart the evolution of monocular VO from
foundational reviews and uncertainty modeling to specialized domains like underwa-
ter robotics. Each work addresses a distinct set of technical barriers —ranging from
algorithmic scale recovery to the incorporation of deep learning, sensor fusion, and
specialized datasets—showing how VO continues to mature into a crucial enabler
for intelligent and adaptive systems, including those underpinning digital twins.

2.1 Overview of digital twins and monocular VO

Exploring unknown environments is a complex challenge that has engaged re-
searchers across various fields. The intricacies of navigating in uncharted territories
require the integration of multiple approaches and the development of sophisticated
methodologies. Among these, the measurement of accurate camera movements to
update the digital twin model of structures plays a significant role, which will be
briefly explained in Subection 2.1.1. Modern navigation systems are often multi-
modal, merging information collected from various methods to achieve enhanced
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precision. Within this complex interplay, Visual Simultaneous Localization and
Mapping (VSLAM) has emerged as a vital tool in computer vision, robotics, and
augmented reality.

VSLAM represents an innovative approach to navigation, addressing the inherent
drift problem through the intelligent combination of camera information with an
environment map. This map, updated incrementally as an agent such as a robot that
moves through the environment, facilitates the accurate and real-time estimation of
the surroundings. The significance of this technology is further underscored by its
reliance on the accuracy of geometrical measurements, which are pivotal to the
localization system. This mechanism aids in the consistent update of models, often
evaluated through the periodic acquisitions of camera images, identification of model
elements, and assessment of changes over time.

The intricate design of modern navigation systems is underscored by their reliance
on the integration of various methods, a process akin to data fusion. This integration
involves merging information from different sources to achieve greater accuracy. The
role of VSLAM is particularly significant in this framework. Employed in fields
like computer vision, robotics, and augmented reality, VSLAM goes beyond merely
combining camera visuals with environmental layouts. Its true value emerges in the
continuous refinement and updating of data, enabling robots or agents to adeptly
navigate through the ever-changing and unpredictable terrains of unfamiliar settings
[8].

VSLAM’s capabilities are broadened through the use of one or more video cam-
eras to reconstruct a 3D map of an often unknowable environment [9] and to gauge
the egomotion-defined as the 3D shifting within space-of the camera itself [10]. The
video cameras used in VSLAM systems are essential for applications, like marker-
less augmented reality and autonomous robotic navigation. When compared with
general SLAM that uses sensors like Light Detection and Ranging (LiDAR), VS-
LAM’s reliance on video cameras brings added advantages [11]. Video cameras are
often smaller, less expensive, and carry rich visual information, making them suit-
able for platforms with limited payloads and lower costs than LiDar or an RGB-D
camera [12, 13].

VO and VSLAM are two closely related techniques that are used to determine a
robot or machine’s location and orientation through the analysis of corresponding
camera images. Both techniques can utilize a monocular camera, but they have
distinct characteristics and objectives [14, 15, 16].
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VO is a technique primarily focused on the real-time tracking of a camera’s trajec-
tory, offering local or relative estimates of the position and orientation. This process
is a part of a broader category known as relative visual localization (RVL). RVL
encompasses methods like VO, which estimate the motion of robots (both rotation
and translation) by localizing themselves within an environment. This localiza-
tion is achieved by analyzing the differences between sequential frames captured
by the camera. One of the key techniques used in VO is Windowed optimization.
Windowed optimization is a process that refines the local estimation of the camera
trajectory by considering a certain number of previous frames or ‘window’ of frames.
This approach helps to improve the accuracy of pose predictions derived from the
analysis of image sequences [17, 18].

On the other hand, VSLAM delivers a global and consistent estimate of the path
of a device, a process often referred to as absolute visual localization (AVL). AVL
provides a pose of a vehicle that is often represented by a six-degrees-of-freedom
(DoFs) pose vector (x, y, z, φ, θ, ψ) [14, 19]. VSLAM has the ability to reduce drift
through techniques, like adjusting the bundle [20] and detecting loop closure [21].
The key difference is that VO is about relative positioning without an understanding
of the larger environment, while VSLAM involves both mapping the environment
and locating the device within that map.

Loop closure is a sub-algorithm of SLAM that identifies previously visited lo-
cations and uses them to correct the accumulated errors in the robot’s pose esti-
mation [22]. The main goal in loop closure is to detect when the robot is observ-
ing a previously explored scene so that additional constraints can be added to the
map [23]. This is crucial in ensuring the consistency of the map and the accuracy of
the robot’s location. The similarities between VO and VSLAM persist until a loop
is closed, after which their functions diverge [10, 24, 25].

Furthermore, VSLAM’s capacity to continuously update the initial map of the
environment based on sensor measurements contributes to its adaptability, enabling
it to reflect changes, such as new objects or variations in lighting conditions. This
makes VSLAM a more comprehensive solution for mapping and localization tasks
in dynamic environments. Monocular VO represents an essential component in the
field of robotic navigation and computer vision, enabling the real-time estimation of
a camera’s trajectory within an environment [25, 26, 27].

From a practical standpoint, VO has a wide range of applications. It is used in
mobile robots, self-driving cars, unmanned aerial vehicles, and other autonomous
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systems to provide robust navigation and obstacle avoidance capabilities [28, 29].

Figure 2.1: The diagram depicts the camera maneuvers used to update the digital twin represen-
tation. The starting position v(ti) of the present path segment is depicted by a blue arrow at the
moment ti. The position for each snapshot is calculated using the parameters θt. Subsequently,
the map points are reprojected onto every snapshot, and the reprojection discrepancy r(Φ(i), θt, t)
is reduced to ascertain the accurate path [30].

2.1.1 Visual Odometry for Digital Twin

The accurate measurement of camera movements is crucial for updating the dig-
ital twin model of structures. This process involves the use of VO and other tech-
niques to capture and analyze camera images, which are then used to update the
digital twin model (Figure 2.1). One method employed to achieve this involves multi-
camera systems. Research examining Blender’s application in designing camera-
based measurement systems revealed that it allows for the flexible and rapid mod-
eling of camera positions for motion tracking, which helps determine their optimal
placements. This approach significantly cuts down setup times in practical scenar-
ios. The methodologies focus on building an entire virtual camera, encompassing
everything from the original camera sensor to the radiometric characteristic of an
actual camera [31]. The study focuses on developing virtual representations of multi-
camera measurement systems using Blender. It investigates whether these virtual
cameras in Blender can perceive and measure objects as effectively as real cameras
in similar conditions. Blender, an open-source software for three-dimensional an-
imation, also serves as a simulation tool in metrology. It allows for the creation
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of numerical models instrumental in the design and enhancement of camera-based
measurement systems.

In a separate study, the Digital Twin Tracking Dataset (DTTD) was introduced
for Extended-Range Object Tracking. This dataset, comprising scenes captured by
a single RGB-D camera tracked by a motion capture system, is tailored to pose
estimation challenges in digital twin applications [32].

Regarding geometric change detection in digital twins, an object’s pose is esti-
mated from its image and 3D shape data. This technique is crucial for pose esti-
mation [33, 34]. Likewise, for the digital twin modeling of composite structures, the
Azure Kinect camera is utilized to capture both depth and texture information [35].
Drone inspection imagery is instrumental in forming operational digital twins for
large structures, enabling the creation and updating of digital twin models based on
high-quality drone-captured images [36]. In summary, the precise measurement of
camera movements is key in updating digital twin models of structures. Techniques
like monocular VO, multi-camera measurement, and drone imagery contribute sig-
nificantly to producing detailed and accurate digital twin models.

2.1.2 Basics of Monocular Visual Odometry

From a theoretical perspective, VO is a complex problem that involves the inter-
section of multiple disciplines, including computer vision, robotics, and mathemat-
ics. It requires the development and application of algorithms that can accurately
track visual features and estimate camera motion from a sequence of images [28].
This involves dealing with challenges such as scale ambiguity in monocular systems,
where the trajectory of a monocular camera can only be recovered up to an un-
known scale factor [29]. Theoretical advancements in VO can contribute to a deeper
understanding of these challenges and the development of more effective solutions.

The foundational algorithm of VO, commencing after compensating for camera
distortion based on parameters estimated during a calibration phase, can be con-
ceptually divided into several sequential steps, each of which contributes to the
overarching objective of motion and trajectory estimation:

1. Feature detection : In the initial phase of VO, the focus is on identifying and
capturing key visual features from the first camera frame, which are essential for
tracking movements across frames. This process, fundamental for the accurate
monitoring of camera movement, traditionally relies on algorithms like Harris,
SIFT, ORB, and BRISK to pinpoint precise and durable features, such as
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corners or edges[37]. However, it is crucial to expand beyond these to include
line and planar features, which have proven to be invaluable in enhancing the
robustness and completeness of feature detection and matching in monocular
VO systems. These additions are essential for capturing the full complexity
and variety of real-world environments [38, 39, 40, 41].

2. Feature tracking: Following feature detection, the VO algorithm focuses
on tracking these identified features across consecutive frames. This tracking
establishes correspondences between features in successive frames, creating a
continuity that facilitates motion analysis. Techniques such as KLT (Kanade–
Lucas–Tomasi) tracking or optical flow have proven effective in this context,
enabling accurate alignment and correspondence mapping [42].

3. Motion estimation: With the correspondences between features in consecu-
tive frames established, the next task is to estimate the camera’s motion. This
process involves mathematical techniques, such as determining the essential
matrix or, if needed, the fundamental matrix. These methods leverage the
correspondences to ascertain the relative motion between frames, providing a
snapshot of how the camera’s position changes over time [43].

4. Triangulation: Based on the estimated camera motion, the algorithm then
moves to determine the 3D positions of the tracked features by triangulation.
This technique involves estimating the spatial location of a point by measuring
angles from two or more distinct viewpoints. The result is a three-dimensional
mapping of features that adds depth and context to the analysis [44].

5. Trajectory estimation: The final step in the basic VO algorithm involves syn-
thesizing the previously gathered information to estimate the camera’s overall
trajectory within the environment and map the surroundings. This composite
task draws upon both the estimated camera motion from step (iii) and the 3D
positioning of the tracked features from step (iv). Together, these elements
coalesce into a coherent picture of the camera’s path, contributing to a broader
understanding of the spatial context [45].

In summary, the basic algorithm for VO is a multi-step process that artfully
combines detection, tracking, estimation trajectory, and triangulation to provide
a nuanced understanding of camera motion within an unknown environment. By
progressing through these distinct yet interrelated phases, VO offers a versatile and
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valuable tool in the quest to navigate and interpret complex spatial environments.
Its contributions extend across various domains, and its underlying methodologies
continue to stimulate research and innovation in both theoretical and applied con-
texts.

2.1.3 Research Challenges in Monocular Visual Odometry

Monocular VO represents a sophisticated domain characterized by exceptional
achievements and compelling intricacy. The sources of uncertainty can significantly
affect the accuracy and reliability of positioning and navigation solutions provided
by VO systems. The advancements achieved in this field have substantially con-
tributed to the evolution of robotics, augmented reality, and navigation systems,
yet substantial challenges persist. These obstacles highlight the complex constitu-
tion of VO and propel ongoing scholarly inquiry and innovation in the discipline.

• Feature Detection and Tracking The efficacy of monocular VO hinges on
the precise detection and tracking of image features, which are critical mea-
surements in the VO process. Uncertainties in these measurements arise under
conditions of low-texture or nondescript environments, which can be exacer-
bated by inadequate lighting and complex motion dynamics, challenging the
robustness of feature-matching algorithms and leading to measurement inaccu-
racies [46].

• Motion Estimation: Robust motion estimation is central to VO, with its
accuracy contingent upon the reliability of feature correspondence measure-
ments. Uncertainty in these measurements can occur due to outliers from
incorrect feature matching and drift resulting from cumulative errors in suc-
cessive estimations, significantly complicating the attainment of precise motion
measurements [47].

• Non-static Scenes: The premise of VO algorithms typically involves the as-
sumption of static scenes, thereby simplifying the measurement process. How-
ever, uncertainty is introduced in dynamic environments where moving objects
induce variances in the measurements, necessitating advanced methods to dis-
cern and correctly interpret camera motion amidst these uncertainties.

• Camera Calibration: The accurate calibration of camera parameters is foun-
dational for obtaining precise VO measurements. Uncertainties in calibration-
due to factors such as environmental temperature changes, light conditions, lens
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distortions, or mechanical misalignments-can significantly distort measurement
accuracy, impacting the reliability of subsequent VO estimations [48].

• Scaling Challenges: In VO, the lack of an absolute reference frame introduces
uncertainty in scale measurements, a pivotal component for establishing the
camera’s absolute trajectory. Inaccuracies in these scale measurements can arise
from ambiguous geometries, limited visual cues, and the monocular nature of
the data, which may lead to scale drift and wrong trajectory computations [49].

• Ground Plane Considerations: The ground plane is often used as a refer-
ence in VO measurements for scale estimation. However, uncertainties in these
measurements can be attributed to ambiguous ground features, variable light-
ing conditions that affect feature visibility, and scaling complexities relative to
object heights, challenging the accuracy of VO scale measurements [50].

• Perspective Projection: The perspective projection in monocular VO intro-
duces inherent uncertainties due to the transformation of 3D scenes into 2D
images, leading to challenges such as depth information loss and scale ambi-
guity. This projection results in the foreshortening and distortion of objects,
complicating the estimation of relative distances and sizes. Additionally, the
overlapping of features in the 2D plane can cause occlusions, disrupting the fea-
ture tracking crucial for motion estimation. The projection of 3D points onto
a 2D plane also introduces feature perspective errors, especially when features
are distant from the camera center or when the camera is close to the scene.

• Timestamp Synchronization Uncertainty: This type of uncertainty arises
when there are discrepancies in the timing of the data capture and processing
among different components of a system, such as cameras, inertial measurement
units (IMUs), and LiDAR scanners. In systems that rely on precise timing for
data integration and analysis, such as visual–inertial navigation systems, this
uncertainty can significantly impact accuracy [17].

In summary, the field of monocular VO offers a rich landscape of technological
possibilities, bounded by multifaceted challenges that span detection, estimation,
scaling, real-time processing, and more. In another aspect, noise sensitivity refers to
the impact of image noise on the performance of VO algorithms, which can degrade
the accuracy of feature extraction and matching, ultimately affecting the estimated
camera trajectory [51]. An uncertainty assessment is essential for evaluating the re-
liability of the estimated camera trajectory in VO. While traditional VO approaches
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often provide an analytical formula for uncertainty, this remains an open challenge
for machine learning-based VO methods [52].

Data synchronization is another important aspect in monocular VO, especially
when integrating data from multiple sensors, such as cameras and inertial measure-
ment units (IMUs) [53]. Proper synchronization ensures that the data from different
sensors are accurately aligned in time, allowing for more precise and reliable tra-
jectory estimation. In some cases, hardware synchronization is used to align the
data from different sensors to a common clock, ensuring accurate data fusion and
improved VO performance [53].

Achieving real-time performance is imperative for VO applications, yet it poses a
challenge due to the computational intensity required for processing measurements.
Uncertainty in real-time performance metrics can stem from variable environmental
conditions that impact the speed and accuracy of feature detection and matching
computations. For example, imagine a self-driving car using VO for navigation.
Achieving real-time performance is crucial because the car needs to make imme-
diate decisions based on its surroundings. However, this is challenging due to the
heavy computational load required to process the camera’s measurements quickly
and accurately.

These challenges not only define the current state of VO but also delineate the
paths for future research and exploration. By grappling with these complexities,
the scientific community continues to pave the way for more nuanced and powerful
applications of VO, extending its reach and impact across various domains. A
summary of the various approaches and their implications can be found in Table
2.1, offering a succinct overview of the literature’s breadth and depth.

Table 2.1: A summary of the mentioned odometry techniques.

Reference Sensor
Type

Method Environmental
Structure

Open
Source

Key Points

[24] LiDAR Bundle
Adjust-
ment

Outdoor Yes Using LiDAR for camera feature
tracks and keyframe-based mo-
tion estimation. Labeling is used
for outlier rejection and land-
mark weighting.

Continued on the next page...
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Reference Sensor
Type

Method Environmental
Structure

Open
Source

Key Points

[50] Monocular Ground
Plane-
Based
Deep
Learning

Outdoor No A ground plane and camera
height-based divide-and-conquer
method. A scale correction
strategy reduces scale drift in
VO.

[54] LiDAR Feature
Extrac-
tion

Outdoor No A VO algorithm using a stan-
dard front end with camera
tracking relative to triangulated
landmarks. Optimizing camera
poses and landmark maps re-
solves monocular scale ambigu-
ity and drift.

[55] Monocular Feature
Extrac-
tion

Indoor No A VO system utilizing a
downward-facing camera, fea-
ture extraction, velocity-aware
masking, and nonconvex opti-
mization, enhanced with LED
illumination and a ToF sensor.

[56] LiDAR Feature
Extrac-
tion

Outdoor Yes LVI-SAM achieves real-time
state estimation and map build-
ing with high accuracy and
robustness.

[57] LiDAR Feature
Extrac-
tion

Outdoor–
Indoor

No A multi-sensor odometry system
for mobile platforms integrating
visual, LiDAR, and inertial data.
Real-time with fixed-lag smooth-
ing.

[58] LiDAR Feature
Extrac-
tion

Outdoor No Combines LiDAR depth with
monocular VO, using photomet-
ric error minimization and point-
line feature refinement alongside
LiDAR-based segmentation for
improved pose estimation and
drift reduction.

[59] Monocular Feature
Extrac-
tion

Outdoor Yes A visual–inertial SLAM system
that uses MAP estimation even
during IMU initialization.

Continued on the next page...
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Reference Sensor
Type

Method Environmental
Structure

Open
Source

Key Points

[60] Monocular Feature
Extrac-
tion

Outdoor No A lightweight scale recovery
framework using accurate
ground plane estimates. In-
cludes ground point extraction
and aggregation algorithms for
selecting high-quality ground
points.

[61] Monocular Feature
Extrac-
tion

Indoor No VO using points and lines. Di-
rect methods choose pixels with
enough gradients to minimize
photometric errors.

[62] Monocular Deep
Learning
Based

Outdoor No Combines unsupervised deep
learning and scale recovery,
trained with stereo image pairs
but tested with monocular
images.

[11] Monocular Deep
Learning
Based

Outdoor–
Indoor

No A self-supervised monocular
depth estimation network for
stereo videos, aligning training
image pairs with predictive
brightness transformation
parameters.

[63] Monocular Deep
Learning
Based

Outdoor No Proposes the DL Hybrid system,
combining DL networks in image
processing with geometric local-
ization theory for hybrid pose es-
timation.

[64] Monocular Deep
Learning
Based

Outdoor No The authors created a decoupled
cascade structure and residual-
based posture refinement in
an unsupervised VO framework
that estimates 3D camera po-
sitions by decoupling rotation,
translation, and scale.

Continued on the next page...
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Reference Sensor
Type

Method Environmental
Structure

Open
Source

Key Points

[17] Monocular Deep
Learning
Based

Outdoor No The suggested network is built
on supervised learning-based ap-
proaches with a feature encoder
and pose regressor that takes
multiple successive two grayscale
picture stacks for training and
enforces composite pose restric-
tions.

[65] Monocular Deep
Learning
Based

Outdoor Yes A neural architecture that per-
forms VO, object detection, and
instance segmentation in a single
thread (SimVODIS).

[66] Monocular Deep
Learning
Based

Outdoor Yes The proposed method is called
SelfVIO, which is a self-
supervised deep learning-based
VO and depth map recovery
method using adversarial train-
ing and self-adaptive visual
sensor fusion.

2.1.4 Traditional Approaches

The scientific literature is rife with diverse methodologies aiming to overcome the
challenges outlined in the preceding section, particularly focusing on the problem
of accurate scale estimation. This issue has typically been addressed through the
reliance on knowledge regarding the height of the camera from the ground plane
and the evaluation of feature movements on that plane[67]. Alternatively, some
approaches have utilized additional tools, such as LiDAR or depth sensors.

Within the domain of autonomous driving, precise vehicle motion estimation
is a crucial concern. Various powerful algorithms have been devised to address
this need, although most commonly, they depend on binocular imagery or LiDAR
measurements. In the following paragraphs, an overview of some prominent works
associated with the scaling challenge is provided, highlighting different strategies
and technologies.

Tian et al. [68] made a significant contribution by developing a lightweight scale
recovery framework for VO. This framework hinged on a ground plane estimate
that excelled in both accuracy and robustness. By employing a meticulous ground
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point extraction technique, the framework ensured precision in the ground plane
estimate. Subsequently, these carefully selected points were aggregated through a
local sliding window and an innovative ground point aggregation algorithm. To
translate the aggregated data into the correct scale, a Random Sample Consensus
(RANSAC)-based optimizer was employed. This optimizer solved a least-squares
problem, fine-tuning parameters to derive the correct scale, and thus displaying
the marriage of optimization techniques and spatial analysis. The parameters for
this fine-tuning are likely chosen based on experimental results to achieve the best
performance

H. Lee et al. [55] presented a VO system using a downward-facing camera. This
system, designed for mobile robots, integrates feature extraction, a novel velocity-
aware masking algorithm, and a nonconvex optimization problem to enhance pose
estimation accuracy. It employs cost-effective components, including an LED for
illumination and a ToF sensor, to improve feature tracking on various surfaces.
The methodology combines efficient feature selection with global optimization for
motion estimation, demonstrating improved accuracy and computational efficiency
over the existing methods. The authors claimed the experimental results validated
its performance in diverse environments, showcasing its potential for robust mobile
robot navigation.

B. Fang et al. [58] proposed a method for enhancing monocular visual odometry
through the integration of LiDAR depth information, aiming to overcome inaccu-
racies in feature-depth associations. The methodology involves a two-stage process:
initial pose estimation through photometric error minimization and pose refinement
using point-line features with photometric error minimization for more accurate
estimation. It employs ground and plane point segmentation from LiDAR data, op-
timizing frame-to-frame matching based on these features, and incorporating multi-
frame optimization to reduce drift and enhance accuracy. Based on the authors’
claim, the approach demonstrates improved pose estimation accuracy and robust-
ness across diverse datasets, indicating its effectiveness in real-world scenarios[69].

Chiodini et al. [54] expanded the improvement on scale estimation by demonstrat-
ing a flexible sensor fusion strategy. By merging data from a variety of depth sensors,
including Time-of-Flight (ToF) cameras and 2D and 3D LiDARs, the authors crafted
a method that broke free from the constraints of sensor-specific algorithms that per-
vade much of the literature. This universal applicability is particularly significant for
mobile systems without specific sensors. The proposed approach optimized camera
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poses and landmark maps using depth information, clearing up the scale ambiguity
and drift that can be encountered in monocular perception.

LiDAR–monocular visual odometry (LiMo) was presented by Graeter et al. [24].
This novel algorithm capitalizes on the integration of data from a monocular camera
and LiDAR sensor to gauge vehicle motion. By leveraging LiDAR data to estimate
the motion scale and provide additional depth information, LiMo enhances both the
accuracy and robustness of VO. Real-world datasets were utilized to evaluate the
proposed algorithm, and it exhibited marked improvements over other state-of-the-
art methods. The potential applications of LiMo in fields like autonomous driving
and robotics underscore the relevance and impact of this research.

To mitigate the influence of outliers on feature detection and matching and en-
hance motion estimation, other researchers introduced data fusion with inertial mea-
surements. This visual–inertial odometry (VIO) integrated system is exemplified in
works like Shan et al. [56], which brought together LiDAR, visual, and inertial mea-
surements in a tightly coupled LiDAR–visual–inertial (LVI) odometry system. This
holistic fusion, achieved through a novel smoothing and mapping algorithm, elevates
the system’s accuracy and robustness. The proposal also introduced an innovative
technique for estimating extrinsic calibration parameters, further optimizing perfor-
mance for applications like autonomous driving and robotics.

Wisth et al. [57] and ORB-SLAM3 [59] further illustrated the technological ad-
vances in multi-sensor odometry systems and real-time operation in various envi-
ronments. The use of factor graphs, dense mapping systems, and various sensors
such as IMUs, visual sensors, and LiDAR highlights the multifaceted approaches to
challenges in motion and depth estimation.

Chuanliu Fan et al. [70] introduce a monocular dense mapping system for visual–
inertial odometry, optimizing IMU preintegration and applying a nonlinear optimization-
based approach to improve trajectory estimation (Figure 2.2) and 3D reconstruction
under challenging conditions. By marginalizing frames within a sliding window, it
manages the computational complexity and combines an IMU and visual data to en-
hance the depth estimation and map reconstruction accuracy. The authors claimed
the method outperforms vision-only approaches, particularly in environments with
dynamic objects or weak textures, and demonstrates superior performance in com-
parison to existing odometry systems through evaluations of public datasets.

Two additional pioneering works are by Huang et al. [60], who introduced a VIO
optimization-based online initialization and spatial–temporal calibration, and Zhou
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Figure 2.2: demonstrates the accuracy and effectiveness of the proposed nonlinear optimization-
based monocular dense mapping system of VIO [70].

et al. [61], who introduced ‘Dplvo: Direct point-line monocular VO’. The former
focuses on an intricate calibration process that aligns and interpolates camera and
IMU measurement data without geographical or temporal information. In contrast,
the latter presents an innovative technique that leverages point and line features
directly, without needing a feature descriptor, to achieve better accuracy and effi-
ciency.

Collectively, these studies represent a robust and multifaceted exploration of
traditional approaches in the realms of motion estimation, depth estimation, and
scale recovery within VO. The methodologies vary widely, each bringing unique
contributions to scientific discourse and providing promising avenues for ongoing
research and development. Their collective focus on enhancing precision, robustness,
and computational efficiency underscores the central challenges of the field and the
diverse means by which these can be overcome.

Table 2.2: Summary of benchmark traditional visual-odometry papers.

Ref. (Year) Sensor Key Technique Metric† Main Strength Main Limitation
[24] (2018) Mono+LiDAR LiMo / Bundle Adj. 0.26% drift Robust scale Heavy LiDAR cost
[55] (2020) Mono Ground-plane scale RMSE 7 cm Lightweight Needs flat floor
[57] (2021) Stereo+IMU Factor-graph VIO 7.1 cm ATE Multi-sensor High CPU load
[56] (2022) LiDAR+Cam+IMU LVI-SAM 0.58 % drift Loop-closing Sparse in texture
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2.1.5 Machine Learning - Based Approaches

Machine learning based approaches to VO are redefining the field with innovative
techniques that harness the power of neural networks [63]. Generally, methods in this
section can be classified into two distinct categories: full deep learning approaches
that utilize neural networks almost exclusively, and semi-deep learning approaches
that combine deep learning with more traditional computer vision techniques.

2.1.6 Full Deep Learning Approaches

Full deep learning approaches leverage the complexity and flexibility of neural
networks to solve challenging VO tasks.

Figure 2.3: in the left column, arranged vertically, are as follows: (a) optical flow map in forward
order, (b) optical flow map in reverse order, (c) points of instantaneous optical flow superimposed
on the original image, (d) map showing monocular depth, (e) map illustrating the matching of key
points in a pair of images, and (f) map depicting the reconstructed trajectory, where the estimated
path is indicated by a blue line [63].

Yang et al. [71] pioneered a method called D3VO. This deep learning-based ap-
proach for VO estimates both camera motion and the 3D structure of the environ-
ment using just a single camera input. Comprising three specialized deep neural
networks, D3VO handles depth prediction, pose estimation, and uncertainty es-
timation. D3VO’s method of uncertainty estimation involves predicting a poste-
rior probability distribution for each pixel, which helps in adaptively weighting the
residuals in the presence of challenging conditions, like non-Lambertian surfaces or
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moving objects. Despite its performance edge over existing VO methods in various
benchmarks, D3VO faces significant challenges, such as the need for extensive la-
beled training data, complexities in securing accurate depth labels, and struggles
with low-texture or featureless environments.

Ban et al. [63] contributed a unique perspective by integrating both the depth
and optical flow in a deep learning-based method for VO (Figure 2.3). This intricate
algorithm first extracts image features, which are then processed through a neural
network to estimate the depth and optical flow. The combination of these elements
enables the accurate computation of motion. However, a major drawback is the
substantial requirement for training data, which is pivotal for effectively training
the neural network.

Figure 2.4: comparing the unsupervised learning approach SelfVIO with monocular OKVIS, VINS,
and the ground truth in meter scale using EuRoC dataset MH-03 and MH-05 sequences in [66, 72].

In a novel approach, Kim et al. [65] designed a method to perform simultaneous
VO, object detection, and instance segmentation. By employing a deep neural
network, the method not only estimates the camera pose but also detects objects
within the scene, all in real time. While promising, this approach also faces its
own set of challenges, particularly the extensive need for training data and potential
difficulties with occlusions and clutter.

A notable trend in this category involves self-supervised learning as a solution
to the data scarcity problem. Many supervised methods for VIO and depth map
estimation necessitate large labeled datasets. To mitigate this issue, the authors
in [66] proposed a self-supervised method that leverages scene consistency in shape
and lighting. Utilizing a deep neural network, this method estimates parameters
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such as camera pose, velocity, and depth without labeled data (Figure 2.4). Still,
challenges persist, such as the accuracy of inertial measurements affected by noise
and the depth estimation accuracy hampered by occlusions and reflective surfaces.

2.1.7 Semi-Deep Learning Approaches

Semi-deep learning approaches blend the power of deep learning with traditional
techniques, leading to methods that are sometimes more adaptable to real-world
constraints.

Zhou et al. [50] addressed the unique challenge of absolute scale estimation in VO
using ground plane-based features. By identifying the ground plane and extracting
its features, they calculated the distance to the camera, assuming certain constants
such as flat ground and the known camera height. Using a convolutional neural net-
work (CNN), the method estimates the scale factor, offering potential applications
in autonomous driving and robotics.

Lin et al. [64] provided an unsupervised method for VO that ingeniously de-
couples camera pose estimation into separate rotation and translation components.
After the initial feature extraction and essential matrix calculation, a deep learning-
based network handles the distinct estimation of rotation and translation. While
groundbreaking, this approach is not immune to challenges, including motion blur
and changes in the lighting conditions.

Adding to the repertoire of semi-deep learning approaches, Ref. [17] introduced
the Windowed Pose Optimization Network (WPO-Net) for VO estimation. In this
method, features are extracted from input images, followed by relative pose com-
putation, with a WPO-Net optimizing the pose over a sliding window. Though
promising, the computational complexity of the WPO-Net stands as a substantial
hurdle, potentially impeding real-time applications.

In summary, machine learning-based approaches are forging new pathways in VO,
where full deep learning methods are stretching the capacities of neural networks,
and semi-deep learning methods are merging traditional techniques with contem-
porary progressions. A salient distinction emerges in the realm of the uncertainty
assessment: traditional approaches often allow for an analytical derivation of un-
certainty, providing clear metrics for measurement confidence. In contrast, deep
learning methods grapple with this as an open problem, with the quantification of
uncertainty remaining an elusive goal in neural network-based predictions. The pur-
suit of uncertainty estimation in deep learning remains a vital research area, as it
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is critical for the reliability and safety of VO systems in practical applications. The
ongoing refinement of these methods underscores a vibrant field ripe with opportu-
nities for innovation, notwithstanding the substantial hurdles that persist.

2.1.8 Uncertainty of Positioning Provided by Monocular VO

In Section ??, the uncertainty sources in monocular VO were discussed. Aksoy
and Alatan [73] addressed this by proposing an inertially aided VO system that
operates without the need for heuristics or parameter tuning. This system, leverag-
ing inertial measurements for motion prediction and the EPnP algorithm for pose
computation, minimizes assumptions and computes uncertainties for all estimated
variables. Their approach effectively compensates for errors related to motion drift
and inaccurate feature matching, ensuring more reliable pose estimation. They
demonstrated high performance in their system, without relying on data-dependent
tuning.

Building on the theme of measurement precision, Ross et al. [74] delved into the
intricacies of covariance estimation in a feature-based stereo VO algorithm. Their
approach involved learning odometry errors through Gaussian process regression
(GPR), which facilitated the assessment of positioning errors alongside the monitor-
ing of VO confidence metrics, offering insights into the uncertainty of VO position
estimates. Their method specifically addresses errors stemming from noisy feature
detection and varying environmental conditions, thereby improving the robustness
of the overall system. Gakne and O’Keefe [75] tackled the scale factor issue in a
monocular VO using a 3D city model. They proposed a method dealing with the
camera height variation to improve the accuracy of the scale factor estimation. They
found that their method provided an accurate solution but up to a scale only. Choi
et al. [76] proposed a robust monocular VO method for road vehicles using uncertain
perspective projection. They modeled the uncertainty associated with the inverse
perspective projection of image features and used a parameter space voting scheme
to find a consensus on the vehicle state among tracked features. They found that
their method was suitable for any standard camera that views part of the road
surface in front of or behind the vehicle.

While the methods proposed in these studies differ, they all aim to improve the
accuracy of monocular VO by addressing the issue of scale uncertainty. The results
of these studies show that it is possible to estimate the uncertainty of positioning
provided by monocular VO and improve its accuracy. However, more research is
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needed to develop robust and reliable methods that can be used in different appli-
cations.

The model for monocular VO can be mathematically formulated as follows. Let
Xt represent the estimated pose of the vehicle at time t and Zt denote the visual
measurements obtained from the monocular camera. The uncertainty associated
with the visual measurements can be represented by the covariance matrix Rt. Ad-
ditionally, the uncertainty on the vehicle motion can be captured by the covariance
matrix Qt. The relative vehicle motion can be estimated by considering the uncer-
tainty on the backprojection of the ground plane features and the uncertainty on the
vehicle motion, as proposed by Van Hamme et al. [77]. This can be mathematically
expressed as:

Xt = f(Xt−1,Zt,Rt,Qt)

where f represents the function that estimates the pose of the vehicle at time t

based on the previous pose, visual measurements, and associated uncertainties. The
uncertainty model integrates the uncertainty of visual measurements and the uncer-
tainty of vehicle motion to provide a more accurate assessment of the positioning
in monocular VO. The uncertainty on the backprojection of ground plane features
and the uncertainty on the vehicle motion are crucial factors in accurately estimat-
ing the relative vehicle motion. The Hough-like parameter space vote is employed
to extract motion parameters from the uncertainty models, contributing to the ro-
bustness and reliability of the proposed method in [76]. Despite the advancements
and insights provided by the existing research, a notable gap in the literature is
the lack of a comprehensive sensitivity analysis regarding the various sources of
uncertainty in monocular VO. The current models and studies often overlook the
full spectrum of factors that contribute to uncertainty, ranging from atmospheric
conditions to sensor noise. This limitation highlights the need for a more holistic
approach to uncertainty modeling in monocular VO. A complete model would not
only account for the direct uncertainties in visual measurements and vehicle mo-
tion but also extend to encompass external factors, like atmospheric disturbances,
lighting variations, and intrinsic sensor inaccuracies. Such a model would enable a
deeper understanding of how these diverse factors interact and influence the overall
uncertainty in VO systems, paving the way for the development of more sophis-
ticated and resilient techniques that can adapt to a wider range of environmental
conditions and application scenarios
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Table 2.3: Key sources of uncertainty in monocular VO and typical mitigation techniques.

Source of Uncertainty Effect on Pose Mitigation Residual Error Ref.
Feature repeatability Scale drift Multi-scale ORB + RANSAC ∼1–2 % [23]
Motion blur / low-light Tracking loss Auto-exposure, CNN deblur < 0.5 pix [71]
IMU bias (VIO) Accum. orientation err Online bias calibration < 0.3°/s [56]
Ground-plane tilt assumption Wrong scale Pitch compensation via IMU < 5 cm [55]
* Timestamp mis-sync Pose jitter Hardware trigger / Kalman — [57]
Dynamic objects Outlier features Semantic mask, optical-flow < 1 % [11]
Perspective projection error Depth ambiguity Line/plane features fusion N/A [61]

* Residual error for Timestamp mis-sync is not provided, as it depends on the system’s motion speed and
inter-sensor delay; such errors are typically systematic and require online calibration rather than statistical

estimation.

2.1.9 Analysis of Challenges and Advancements

Building on the individual challenges introduced in Subsection 2.1.3 and the VO
methods discussed throughout Section 2.1, this subsection provides a comparative
and integrative analysis. It highlights how different methods address—or fail to ad-
dress—key limitations of monocular VO, emphasizing trade-offs, unresolved issues,
and directions for improvement.

The implementation and performance of various machine learning-based methods
for VO have led to interesting observations and challenges, particularly concerning
feature extraction, noise sensitivity, depth estimation, and data synchronization.

The difficulty in feature extraction at high speeds is highlighted in several works[63,
11, 60]. This challenge is exacerbated by factors such as the optical flow on the road
and increased motion blur when the vehicle moves fast. Such conditions make fea-
ture tracking an arduous task, allowing for only a limited number of valid depth
estimates. Some methods have attempted to stabilize results by tuning the feature
matcher for specific scenarios, like highways. Still, this often leads to complications
in urban settings, where feature matches might become erratic.

Standstill detection, an essential aspect of VO, is another area fraught with diffi-
culty. When the vehicle speed is low, errors can occur if the standstill detection is not
well calibrated. The nature of the driving environment, such as open spaces where
only the road is considered suitable for depth estimation, adds further complexity
to the problem.

The reliance on homography decomposition, as seen in [50], has been found to
be highly sensitive to noise. This sensitivity arises from the noisy feature matches
obtained from low-textured road surfaces and the multitude of parameters derived
from the homography matrix. The task of recovering both camera movement and
ground plane geometry is a significant challenge that can affect numerical stability.
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Moreover, any method relying on the ground plane assumption is vulnerable to
failure if the ground plane is obscured or deviates from the assumed model. This
reveals the intrinsic limitation of such methods in varying environmental conditions.

A remarkable development in this field is ORB-SLAM3 [59, 78], which has estab-
lished itself as a versatile system capable of visual–inertial and multimap SLAM us-
ing various camera models. Unlike conventional VO systems, ORB-SLAM3’s ability
to utilize all previous information from widely separated or prior mapping sessions
has enhanced accuracy, showcasing a significant advancement in the field.

Deep learning-based approaches to VO, such as those using CNNs and RNNs,
have treated VO and depth recovery predominantly as supervised learning prob-
lems [11, 64, 62]. While these methods excel in camera motion estimation and
optical flow calculations, they are constrained by the challenge of obtaining ground
truth data across diverse scenes. Such data are often hard to acquire or expensive,
limiting the scalability of these approaches.

The issue of timestamp synchronization also emerges as a critical concern, as
highlighted in [17]. Delays in timestamping due to factors like data transfer, sensor
latency, and Operating System overhead can lead to discrepancies in visual–inertial
measurements. Even with hardware time synchronization, issues like clock skew can
cause mismatches between camera and IMU timestamps [79, 80]. Moreover, synchro-
nization challenges extend to systems using LiDAR scanners, where the alignment
with corresponding camera images must be precise. Any deviation in this synchro-
nization can lead to erroneous depth data and subsequent prediction artifacts.

In summary, the machine learning-based approaches to VO chart an intriguing
course of breakthroughs and obstacles. Notable progress in employing deep learning
and the advent of sophisticated systems such as ORB-SLAM3 mark the current era.
Nevertheless, the domain wrestles with intricate issues concerning feature extrac-
tion, noise sensitivity, data synchronization, and the procurement of reliable ground
truth data. Central to these challenges is the assessment of uncertainty: traditional
VO methods could offer probabilistic insights into measurement accuracy, but the
integration of uncertainty quantification within deep learning remains a nascent
and critical area of research. In traditional approaches, the provided uncertainty
models primarily consider sensor noise, neglecting other significant sources of un-
certainty. These overlooked elements include factors such as lighting conditions and
environmental parameters, which also play a crucial role in the overall accuracy and
reliability of the system. A more profound understanding and effective management
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of uncertainty could significantly enhance the reliability and applicability of VO
technologies, highlighting an essential frontier for ongoing investigative efforts. As
such, there is a pressing impetus for continuous research and development to refine
the robustness of VO systems and their adaptability to the unpredictable dynamics
of real-world environments.

Future research in the field of VO and machine learning is set to tackle key chal-
lenges, such as improving feature extraction under difficult conditions, enhancing
noise and uncertainty management, developing versatile depth estimation methods,
and achieving precise data synchronization. There is a notable demand for novel
feature extraction algorithms that perform well in varied environments, alongside
more sophisticated models for noise filtering and uncertainty handling. Addressing
depth estimation limitations and refining synchronization techniques for integrat-
ing multiple sensor inputs are also critical. Importantly, incorporating uncertainty
quantification directly into deep learning models for VO could significantly boost
system reliability and utility across different applications. These research directions
promise to elevate the efficacy and adaptability of VO systems, making them more
suited for the complexities of real-world deployment.

2.2 Assessing Measurement Uncertainty in VO and Sensi-
tivity in VIO

In this section, a preliminary uncertainty model is proposed for the RVL of UAVs
by means of VO based on a monocular camera. Moreover, several feature extraction
algorithms, usually adopted in VO, have been analyzed to evaluate the measurement
uncertainty according to the proposed model by simulating a UAV flight mission in
MATLAB.

2.2.1 Preliminary Uncertainty Model for VO-based Navigation

The uncertainty model has been applied to the monocular VO-based navigation
method derived from the steps delineated in [81]. In particular, the considered
UAV is equipped with a monocular camera looking at the ground and with an al-
titude sensor providing the height of the UAV with respect to the ground floor.
Furthermore, it has been assumed that the UAV flies at a fixed altitude and all
the feature points correspond to points on the ground. As shown in Figure. 2.5,
the UAV position P (i) is obtained from the previous position P (i− 1) by adding a
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Figure 2.5: Overieview of the adopted monocular VO-based navigation method.

displacement vector. This displacement vector is estimated according to the image
features acquired in P (i − 1) and P (i), and the flight altitude with respect to the
ground. The RGB image acquired in P (i) is given to a feature detection algorithm,
(e.g., Speeded Up Robust Features SURF method, Harris corner detector, and so
on). The following keypoint detectors and descriptors were employed: ORB (Ori-
ented FAST and Rotated BRIEF), SIFT (Scale-Invariant Feature Transform), and
Harris corner detection. The choice was based on a trade-off between robustness,
computational cost, and compatibility with downstream processing (e.g., RANSAC
homography estimation). The extracted feature points are passed to the feature
matching. The feature matching finds the most similar features between the ones
extracted in P (i) and in P (i − 1). The matched features are then used to obtain
the disparity map.This map is analogous to optical flow and should not be confused
with stereo disparity. Because we employ a monocular camera, no rectification or
stereo baseline is available; instead, it has recovered depth for each pixel using the
known flight altitude h(k) (from the altimeter) and the intrinsic calibration matrix
K. This disparity map represents the distance, with respect to the camera origin, in
terms of pixels, of the features on both images (i.e., the ones in P (i) and the others
in P (i− 1)). This map represents the apparent motion of objects between a pair of
images. By knowing the depth of each point of the disparity map with respect to
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the camera origin, which has been assumed to be equal to the flight altitude, and
the intrinsic camera parameters (i.e., focal length and pixel size), it is possible to
estimate the displacement vector ∆(i). The new position P (i) is estimated as a vec-
torial sum between the estimated coordinate positions in P (i− 1) and the obtained
displacement vector ∆(i).
In Figure. 2.6, a graphical representation of the adopted model, derived from the
above-described process, is shown. In the following, it has been explained for the
x− z plane, however, the same model can be applied to the y − z.

Figure 2.6: Geometry of the VO model. Axes x and z belong to the ground frame G (x = Xg,
z =Zg).

It has been assumed that the point G is recognized by the feature matching
algorithm on both images and it is at the ground level. In this way, hG (i.e., distance
along the z-axis between the optical center of the camera, C, and G) is equal to the
flight altitude. The displacement along the x-axis, ∆x(i), is obtained as follows:

∆x(i) = ∆px(i) · µ
f

· hG (2.1)

where, the term ∆px(i) = px(i) − px(i− 1) represents the disparity along the x-axis,
px(i) and px(i− 1) correspond to the x-coordinates in pixels of the projections of G
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on the camera sensor in both positions, respectively, µ is the pixel size, and f is the
focal length of the camera. The x-coordinate of P (i), i.e., x(i) is:

x(i) = ∆x(i) + x(i− 1) (2.2)

By combining (2.1) and (2.2), it is obtained:

x(i) = ∆px(i) · µ
f

· hG + x(i− 1) (2.3)

According to (2.3), the main uncertainty sources that affect the position estimates
are: (i) the flight altitude measurement (i.e., hG), (ii) the disparity (i.e., ∆px(i)), and
(iii) the uncertainty related to the knowledge of the intrinsic camera parameters (i.e.,
µ and f). In turn, the disparity estimate is influenced by the type of algorithms used
for feature detection and matching, and the noise affecting the acquired images. This
noise can be due to environmental conditions (e.g., wind, light, visibility conditions)
and the UAV flight stability. Among the above-mentioned uncertainty sources, as
reported in [81], one of the main challenges for VO is to increase the accuracy related
to the disparity map estimation performed by the feature detection and matching.
Hence, in this preliminary analysis, the disparity has been considered as a unique
uncertainty source. Furthermore, it is considered that the positions estimated in i

and i − 1 are uncorrelated. The assumption of zero correlation between P(i − 1)
and P(i) is convenient for an analytical closed–form uncertainty, but it is only exact
when the inter–frame displacement is computed from independent sensor data. In
practice, monocular VO propagates the previous pose as initial guess and therefore
couples the two epochs. Let the 2-D ground-frame position be P(i) = [x(i) y(i)]T

and let ΣP (i) be its covariance matrix:

ΣP (i) =
 σ2

x σxy

σxy σ2
y

 .
The off-diagonal term σxy captures the coupling of the horizontal directions,

mainly induced by: (i) camera yaw/pitch during forward motion, and (ii) perspective
projection that mixes pixel errors in u and v into both x and y. Moreover, the
covariance at epoch i is obtained via

ΣP (i) = J∆ Σ∆(i) JT
∆ + ΣP (i− 1),

where Σ∆(i) is the covariance of the pixel–displacement vector ∆p(i) and J∆ =
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∂(x,y)
∂(u,v) is the Jacobian.

In this way, by applying the law of propagation of uncertainty according to [82]
to (2.3), it is obtained:

ux(i) =
√
u2

∆px(i) · µ
2

f 2 · h2
G + u2

x(i−1) (2.4)

where, u∆px(i) is the uncertainty of the disparity measurements. As expected (2.4)
is a recursive equation where the uncertainty at i depends on the uncertainty at the
previous step i− 1. By considering an initial uncertainty at the position i = 0, i.e.,
ux(0), the uncertainty at i is:

ux(i) =

√√√√ i∑
m=1

u2
∆px(m) · µ

2

f 2 · h2
G + u2

x(0) (2.5)

If u∆px(m) is constant for m = 1 . . . i, it can be written:

ux(i) =
√
i · u2

∆px
· µ

2

f 2 · h2
G + u2

x(0) (2.6)

As an example, in Figure. 2.7, the expanded uncertainty, Ux(i), according to (2.6),
with a coverage factor of 3, for a camera having a focal length f = 24 mm and a
pixel size µ = 21.8 µm, by considering a flight altitude hG = 50 m and ux(0) = 0.1 m,
is depicted against the number of position estimates i for several u∆px ranging from
2 px to 18 px. As expected, the uncertainty increases with the number of estimates
i. In particular, it can be seen the uncertainty for u∆px = 10 px after 20 position
estimates is higher than 5 m, which is not acceptable in several practical cases.

It is worth noting that the coverage factor k = 3 is used in this analysis to
represent a confidence level of approximately 99.7%, assuming normally distributed
uncertainties. This conservative value is appropriate for safety-critical UAV navi-
gation scenarios. Nevertheless, alternative coverage factors (e.g., k = 2 for 95.4%
confidence) can be adopted depending on application requirements.

2.2.2 Experimental Assessment

The proposed uncertainty model has been applied to images captured by using a
UAV flight mission simulator available in MATLAB by considering several feature
detection algorithms. These algorithms have been compared in terms of uncertainty
in the estimation of the displacement vector ∆x(i). Then, according to (2.4), the
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Figure 2.7: Expanded uncertainty Ux(i) obtained for u∆px
ranging from 2 px to 18 px, considering

a camera with f = 24 mm and µ = 21.8 µm, a flight altitude hG = 50 m, and ux(0) = 0.1 m.

uncertainty for the x and y coordinate estimations has been applied to the best
feature estimator.

2.2.3 UAV flight mission simulator

The adopted UAV flight mission simulator is based on the UAV simulator package
called “Delivery example” available in MATLAB [83]. This example simulates the
flight of a quadrotor in an urban environment. In particular, the flight simulator
allows the definition of the flight mission in QGround control by setting the takeoff,
landing points, and other waypoints. For each point, it is possible to choose the
flight altitude and the UAV speed. In the performed simulation, the flight mission
consists of a takeoff to the flight altitude of 50 m, then the landing after around
60 m of horizontal flight along the x direction at the constant speed of 5 m s−1. The
VO method has been applied only during the horizontal flight without considering
the images acquired during takeoff and landing. The considered parameters for the
camera are: (i) f = 24 mm, (ii) µ = 21.8 µm, and (iii) an image size of 1080 × 1920
pixels. Regarding the navigation environment, the 3D simulator allows to modify the
weather conditions in terms of sun position, cloud opacity, cloud speed, fog density,
and rain density. In the performed simulations, those parameters are imposed as
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default [84]: (i) the sun altitude is 40◦ and azimuth is 90◦, (ii) the cloud opacity is
10 %, (iii) the cloud speed direction is from west to east, and (iv) there is no fog
and no rain. In Figure. 2.8, a screenshot of the UAV flight simulator environment
is reported. During the simulation, the images are acquired with a sampling period
of 0.25 s.

Figure 2.8: Screenshot of the UAV flight simulator, on the left the QGroundControl user interface,
and on the right the 3D simulated environment.

In the performed simulation, the onboard camera is configured to be downward-
facing, with its optical (z) axis orthogonal to the ground plane. As a result, the
image plane axes (x and y) are considered approximately parallel to the ground
surface. This assumption allows for simplified projection geometry during trajec-
tory estimation. However, it is acknowledged that in real-world UAV operations,
slight deviations from this ideal orientation may occur due to UAV motion dynam-
ics, environmental disturbances, or sensor mounting inaccuracies. Such inclinations
may introduce additional uncertainties in the localization process, and should be
addressed through further experimental calibration or robust uncertainty modeling
in future studies.

2.2.4 Feature detection algorithms

As stated in Section 2.2.1, an important step for VO navigation is the feature
detection. In the performed analysis, three feature detection algorithms have been
tested: (i) SURF, (ii) Harris-Stephens (in the following called as Harris), and (iii)
Features from Accelerated Segment Test (FAST).
The SURF algorithm is based on two steps, the feature extraction and the feature
description [85]. The feature extraction is performed by filtering the image at dif-
ferent scales through a Gaussian filter and applying a second-order derivative [85].
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For the obtained scaled images the determinant of the Hessian matrix is calculated
[85]. The feature description is based on the orientation assignment using wavelet
responses in the horizontal and vertical directions [85].
The Harris algorithm is a corner detector that determines whether a region is an

(a)

(b)

Figure 2.9: Box plots of the expanded displacement uncertainty values, U∆ along: (a) x-direction,
and (b) y-direction for SURF, Harris, and FAST algorithms.
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edge, a corner, or flat according to a threshold value. Then, the Non-Max Suppres-
sion is applied to select only one region class for each classified sub-image according
to the class with the highest probability [86].
The FAST algorithm is a corner detection algorithm using a circle of 16 pixels to
classify whether a candidate point is a corner [87]. If a set of contiguous pixels in
the circle are all brighter than the intensity of the candidate point plus and minus
a threshold value, then it is classified as a corner [87].

Figure 2.10: Estimated trajectory with the VO navigation method based on the Harris feature
extractor vs. the reference trajectory provided by the simulator.

2.2.5 Uncertainty assessment

The three feature detection algorithms have been compared in terms of expanded
uncertainty of the displacement estimation. For each estimate, the uncertainty of
the disparity map in terms of pixels (i.e., u∆px(i) and u∆py(i)) is evaluated from the
standard deviation of the disparity values obtained for each couple of images, while
their mean value is used for estimating the i-th displacement. According to the sim-
ulated flight mission, the number of uncertainty estimations is 80. In Figure. 2.9,
the box plots of the 80 uncertainty values obtained for SURF, Harris, and FAST
algorithms are reported for the displacement estimates along the x and y axes. This
comparison shows the SURF algorithm underperforms Harris and FAST in terms
of uncertainty. On the other hand, Harris and FAST are comparable along both
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(a)

(b)

Figure 2.11: Estimated coordinates and expanded uncertainties obtained from (2.4) along: (a)
x-direction, and (b) y-direction by using a VO navigation method based on the Harris feature
extractor vs. the reference trajectory.

axes. However, for the x-axis, the distribution of the uncertainty values for Harris
is slightly shifted to lower values than the distribution of uncertainties for FAST.
Furthermore, Harris exhibits a lower number of outliers for the uncertainty along
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Figure 2.12: Disparity map in position 6.

the y-axis. For this reason, the Harris algorithm has been selected among the tested
ones for assessing the uncertainty in the estimate of the position of the UAV.
Figure. 2.10 reports the estimated trajectory by means of the VO navigation method
using the Harris feature detector with respect to the reference trajectory provided
by the simulator. It can be noted that along the y-axis, there is an error of around
0.3 m for the position estimates, while, along the x-axis, the proposed method over-
estimates the length of the flight, i.e., 73 m instead of 61 m. This overestimate is
evident in Figure. 2.11, where it can be seen that the estimated trajectory is affected
by drift, as is expected for VO-based navigation.
Figure. 2.11 reports the x and y coordinates of the estimated positions according
to the VO navigation method with respect to the reference coordinates, together
with the expanded uncertainty according to (2.4). In this analysis, the uncertainties
along the x and y axes at position 0, i.e., ux(0) and uy(0), are assumed to be 0.1 m.
It can be seen that the uncertainty increases with the number of position estimates
and the uncertainty along the x-axis is higher than the one obtained along the y-
axis. This is mainly due to the fact that the UAV is moving only along that axis
in the performed simulation. Furthermore, Figure. 2.11 shows that the uncertainty
values drastically increase in two positions, i.e., 6 and 28. In these two positions, the
variability of the disparity map is very high, i.e., 41 pixels and 93 pixels for 6 and
28, respectively. By looking at the disparity map in position 6, it can be seen that
this highest uncertainty is due to a wrong matching of the feature on the pedestrian
crossing, see Figure. 2.12.



Advances in Monocular Visual Odometry 47

2.2.6 Sensitivity Analysis for Visual-Inertial Odometry

Unmanned aerial vehicle (UAV)-based delivery has become increasingly popular
as a cost-effective and environmentally friendly method for transporting goods. Its
growing application spans different scenarios, including last-mile delivery, regional
air transit, and providing services to remote or hard-to-reach areas [88]. UAVs are
also increasingly utilized for critical operations such as emergency medical supply
transport, military logistics, and passenger transportation [89]. These expanding
roles require UAVs to operate in proximity to critical infrastructure and human
traffic, presenting both opportunities and challenges for safe and efficient opera-
tions.
To guarantee a high level of safety in autonomous and semi-autonomous piloting sys-
tems, it is important to provide an accurate estimation of the UAV pose, i.e., position
and orientation measurements. Among UAV navigation solutions, Global Naviga-
tion Satellite System (GNSS)-assisted inertial navigation systems (INS), which inte-
grate inertial measurement unit (IMU) data, are the most used [90]. These systems
rely on inertial data from accelerometers and gyroscopes, combined with GNSS posi-
tion measurements, to estimate the platform’s pose. However, GNSS-based methods
may lead to unreliable navigation results, particularly in urban areas where signal
obstructions and multipath effects occur [90]. GNSS-denied solutions have been
proposed to address these limitations, including vision-based, LiDAR-based, radar-
based, ultra-wideband (UWB) positioning, and combined navigation systems [91].
VIO approaches combine data from vision and IMU sensors [92]. They utilize pose
constraints from the IMU and the camera to solve an optimization problem that
estimates incremental motion [91]. Camera constraints are derived by matching
unique features identified across images [63]. The vision sensors are usually RGB
cameras, depth cameras and/or LiDAR [93].

In the literature, two performance metrics assess positional accuracy: root-mean-
square error (RMSE) and percentage position drift (or relative position drift) with
respect to the travelled distance [88]. RMSE is calculated as the square root of
the average of the squared differences between the actual path coordinates and the
coordinates obtained from the estimated trajectory. Percentage position drift is the
difference in position between the actual and estimated trajectories, expressed as a
percentage of the distance travelled along the trajectory to the calculated point[94].
Although these metrics quantify point-by-point error with respect to a reference sys-
tem, they do not provide any information regarding the main uncertainty sources
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affecting the position and orientation measurements. To accomplish this, an uncer-
tainty model that incorporates all sources of error is essential for quantifying how
sensitive the provided measurements are to each source [95]. This allows the im-
plementation of targeted countermeasures to mitigate these errors effectively, thus
improving overall accuracy.
A preliminary uncertainty model was proposed in [95]. This model considers a UAV
equipped with a monocular RGB camera and an altimeter to estimate the UAV’s
position. Several proposals in the literature suggest using IMU, LiDAR, and depth
cameras to enhance position accuracy [96], [97]. Additionally, the analysis in [95]
aimed to evaluate how sensitive the position measurements are to the accuracy of
traditional feature extraction and matching algorithms found in the literature (such
as SURF, Harris, FAST). This evaluation did not consider other sources of un-
certainty, such as the camera’s focal length, orientation measurements, and flight
altitude. Furthermore, the uncertainty assessment was conducted without varying
environmental and light conditions.

In this section, a more complex VIO framework was considered by combining
the information provided by the camera with LiDAR, altimeter, and inertial mea-
surements. In addition to traditional keypoint detection algorithms, more advanced
methods have been evaluated, including semantic segmentation using a Deep Learn-
ing (DL) model. Although semantic segmentation does not directly extract geomet-
ric keypoints, it produces object-level masks that can be used to guide the selection
of robust and context-aware feature points within semantically meaningful regions of
the image. This improves matching performance especially in visually degraded or
cluttered scenes. The uncertainty model was modified accordingly, and a sensitivity
analysis was carried out, considering various environmental and light conditions, as
well as the uncertainty related to orientation, depth/altitude measurements, and
intrinsic camera parameters.

2.2.7 Visual Inertial Odometry Framework

Figure. 2.13 illustrates a simplified model representing the common steps typi-
cally employed in the implementation of a VIO navigation system. This framework
serves as the foundation for developing the uncertainty model presented in this
work. The first step involves identifying keypoints within a frame—specific points
of interest that stand out due to differences in colour or brightness[98, 99, 100]. A
feature descriptor can uniquely characterize each keypoint. The second step focuses
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Figure 2.13: Workflow of the modelled VIO method. The measurements required for pose esti-
mation are assumed to be provided by specific onboard sensors: an RGB or RGB-D camera for
image acquisition, an Inertial Measurement Unit (IMU) for roll, pitch, and yaw angles, and either
an altimeter or LiDAR module for depth or altitude data. The intrinsic camera parameters are
assumed to be calibrated beforehand. These sensors are representative of typical UAV payload
configurations for navigation in GNSS-denied environments.

on matching these features between two consecutive frames based on their similar-
ity. However, many correspondences are often not correctly identified. The third
step addresses this issue by filtering out false matches. Finally, in the fourth step, a
mathematical model is used to estimate the system’s position based on the position
estimates from the previous step, the orientation measurements, the intrinsic cam-
era parameters, and either altitude or depth measurements, depending on whether
the UAV is equipped with an altimeter or an RGB-D camera. For identifying the
keypoints, the following algorithms have been considered to assess the performance
of the localization system: (i) SIFT (Scale-Invariant- Feature-Transform) [101], (ii)
SURF (Speeded-Up-Robust-Features) [85], (iii) FAST (Features-from-Accelerated-
Segment-Test) [87], (iv) Harris [86], (v) MEF (Minimum-Eigenvalue-Features) [102],
(vi) ORB (Oriented-FAST-and-Rotated-BRIEF) [40], and (vii) semantic segmenta-
tion via DL [103]. The first six algorithms identify the points of interest, within
digital images, that remain particularly recognizable despite variations caused by



Advances in Monocular Visual Odometry 50

camera movement or shake, scaling, lighting, and other environmental factors. The
semantic segmentation exploits a trained neural network to assign a label to each
pixel in an image, corresponding to object categories. By extracting object masks
common between two frames, the keypoints are obtained. The homography matrix
estimation using the RANdom SAmple Consensus (RANSAC) method has been
adopted to match keypoints between two consecutive frames [104]. This matrix de-
scribes a relationship between points in two consecutive frames such that each point
in one frame corresponds to one and only one point in the other frame. It consists
of nine parameters with eight degrees of freedom:

H =


h11
h33

h12
h33

h13
h33

h21
h33

h22
h33

h23
h33

h31
h33

h32
h33

1

 (2.7)

Therefore, it can be estimated once four keypoints are recognised in both frames,
[ϵc(i − 1), ηc(i − 1)] and [ϵc(i), ηc(i)] with c = 1, 2, 3, 4, i and i − 1 representing the
current frame and the previous one, respectively:

h = A−1 · b (2.8)

where, h = [h11, h12, h13, h21, h22, h23, h31, h32, h33]T , b = [0, . . . , 0, 1]T , and

A =



ϵ1(i− 1) η1(i− 1) 1 0 0 0 −ϵ1(i− 1)ϵ1(i) −η1(i− 1)ϵ1(i) −ϵ1(i)
0 0 0 ϵ1(i− 1) η1(i− 1) 1 −ϵ1(i− 1)η1(i) −η1(i− 1)η1(i) −η1(i)
... ... ... ... ... ... ... ...

ϵc(i− 1) ηc(i− 1) 1 0 0 0 −ϵc(i− 1)ϵc(i) −ηc(i− 1)ϵc(i) −ϵc(i)
0 0 0 ϵc(i− 1) ηc(i− 1) 1 −ϵc(i− 1)ηc(i) −ηc(i− 1)ηc(i) −ηc(i)
... ... ... ... ... ... ... ...

ϵ4(i− 1) η4(i− 1) 1 0 0 0 −ϵ4(i− 1)ϵ4(i) −η4(i− 1)ϵ4(i) −ϵ4(i)
0 0 0 ϵ4(i− 1) η4(i− 1) 1 −ϵ4(i− 1)η4(i) −η4(i− 1)η4(i) −η4(i)



(2.9)

However, more than four correspondences between two images are obtained in fea-
ture detection and tracking algorithms. For this reason, it is necessary to use the
RANSAC algorithm, which allows estimating the homography matrix from a large
set of correspondences (significantly more than four) and eliminating correspon-
dences that do not satisfy the transformation dictated by the homography matrix
based on a set threshold. In the analysed workflow, the threshold value has been
fixed to 2 pixels, and the maximum number of iterations of RANSAC is 100. As
shown in Figure. 2.14, once the keypoints are identified, the UAV’s position can
be estimated using: (i) orientation data from the IMU, (ii) depth or altitude mea-
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surements from the RGB-D camera or altimeter, and (iii) the camera’s intrinsic
parameters, such as focal length and pixel size. Consider the vectors β and b, they
are collinear:

β = k · b (2.10)

with k ∈ R, β = [ϵi −ϵo, ηi −ηo,−c]T , and b = [x′
i −xi, y

′
i −yi, z

′
i −zi]T . where (ϵo, ηo)

are the coordinates of the focal point, c is the focal length, (ϵi, ηi) are the coordinates
of the point P ′

i = (x′
i, y

′
i, z

′
i) in the image plan, P i and P i−1 are the coordinates of

the UAV in the i-th and (i − 1)-th positions. It should be noted that even if the
camera frame is assumed to be aligned with the ground frame (i.e., yaw, pitch, and
roll angles are zero), the origins of the two frames may still differ. In particular, the
vector b⃗, representing the position of the observed feature point, must be expressed
in the same reference frame as the UAV pose to ensure consistent transformation.
Therefore, b⃗ should be transformed into the camera frame of reference if calculations
are performed in that domain, or alternatively, a translation offset should be consid-
ered to account for the displacement between the frame origins. This alignment is
crucial for maintaining geometric consistency in the uncertainty propagation model.

Let consider the effect of the yaw ϕ, pitch θ, and roll γ angles measured by UAV
during flight on the recognised point P ′

i:

Pi
′ = R · Pt (2.11)

where, Pt contains the coordinates of the recognised key point into the reference
plane, which is defined according to the magnetic north and the gravity vector, and
R is the 3 × 3 rotation matrix obtained from ϕ, θ, and γ. Substituting in (2.10),
the following system of equations can be written:

ϵi − ϵo = k · [r11(xt − xi) + r12(yt − yi) + r13(zt − zi)]

ηi − ηo = k · [r21(xt − xi) + r22(yt − yi) + r23(zt − zi)]

−c = k · [r31(xt − xi) + r32(yt − yi) + r33(zt − zi)]

(2.12)

By solving this system of equations for xt and yt, it is obtained:

xt = xi + (zt − zi) r11(ϵi−ϵo)+r12(ηi−ηo)−r13c
r31(ϵi−ϵo)+r32(ηi−ηo)+r33c

yt = yi + (zt − zi) r21(ϵi−ϵo)+r22(ηi−ηo)−r23c
r31(ϵi−ϵo)+r32(ηi−ηo)−r33c

(2.13)
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Figure 2.14: Model used for estimating the UAV position according to the orientation measure-
ments provided by IMU, the depth/altitude measurements provided by the RGB-D camera/al-
timeter, the keypoints obtained from the feature matching, and the camera’s intrinsic parameters.

The eq. (2.13) can be written for i− 1, too:

xt = xi−1 + (zt − zi−1) r11(ϵi−1−ϵo)+r12(ηi−1−ηo)−r13c
r31(ϵi−1−ϵo)+r32(ηi−1−ηo)+r33c

yt = yi−1 + (zt − zi−1) r21(ϵi−1−ϵo)+r22(ηi−1−ηo)−r23c
r31(ϵi−1−ϵo)+r32(ηi−1−ηo)−r33c

(2.14)

By substituting eq. (2.13) in eq. (2.14):

xi = xi−1 + di−1
r11i−1 (ϵi−1−ϵo)+r12i−1 (ηi−1−ηo)−r13i−1 c

r31i−1 (ϵi−1−ϵo)+r32i−1 (ηi−1−ηo)+r33i−1 c
+

−di
r11i

(ϵi−ϵo)+r12i
(ηi−ηo)−r13i

c

r31i
(ϵi−ϵo)+r32i

(ηi−ηo)+r33i
c

yi = yi−1 − di−1
r21i−1 (ϵi−1−ϵo)+r22i−1 (ηi−1−ηo)−r23i−1 c

r31i−1 (ϵi−1−ϵo)+r32i−1 (ηi−1−ηo)−r33i−1 c
+

+di
r21i

(ϵi−ϵo)+r22i
(ηi−ηo)−r23i

c

r31i
(ϵi−ϵo)+r32i

(ηi−ηo)−r33i
c

(2.15)

where, di = zi − zt and di−1 = zi−1 − zt are the depth measurements of the keypoint
P t in the i-th and (i− 1)-th frames, respectively. Eq. (2.15) analytically describes
the relationship between the recognised keypoints in the image plane (i.e, (ϵi, ηi)
and (ϵi−1, ηi−1) and the UAV position in i. This equation can be applied to all
the recognised keypoints the false match filter provides. Thus, the final position is
obtained from the average of the P i values for every pair of recognised keypoints.



Advances in Monocular Visual Odometry 53

Table 2.4: Type A uncertainties for the algorithms used in keypoint extraction.

Algorithm uϵ [px] uη [px]
ORB 2 2
FAST n.a. n.a.
Harris 4 4
MEF 4 4
SURF 3 3
SIFT 2 2

Semantic segmentation 1 1

Figure 2.15: Estimated trajectories with uncertainty intervals with a coverage factor of 2 and the
reference positions: (a) ORB, (b) Semantic segmentation.

2.2.8 Uncertainty Model

According to eq. (2.15), the position P i of the UAV can be obtained from
the P i−1 position according to the yaw, pitch and roll angles measurements, the
position in pixels of the recognised keypoints, their depth measurements, and the
camera focal length. It is assumed that the noise affecting the measurements is
uncorrelated. This assumption is valid in this case, as the noise was simulated and
specifically generated as independent, allowing the uncertainty of the estimated xi
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and yi coordinates to be expressed as follows [82]:

u2
xi

= u2
xi−1

+ b2
1 · u2

di−1
+ b2

2 · u2
di

+ b2
3 · u2

ϵi
+ b2

4 · u2
ϵi−1

+
+b2

5 · uηi
+ b2

6 · uηi−1 + b2
7 · u2

ϵo
+ b2

8 · u2
ηo

+ b2
9 · u2

c+
+b2

10 · u2
ϕi

+ b2
11 · u2

θi
+ b2

12 · u2
γi

+ b2
13 · u2

ϕi−1
+

+b2
14 · u2

θi−1
+ b2

15 · u2
γi−1

u2
yi

= u2
yi−1

+ c2
1 · u2

di−1
+ c2

2 · u2
di

+ c2
3 · u2

ϵi
+ c2

4 · u2
ϵi−1

+
+c2

5 · uηi
+ c2

6 · uηi−1 + c2
7 · u2

ϵo
+ c2

8 · u2
ηo

+ c2
9 · u2

c+
+c2

10 · u2
ϕi

+ c2
11 · u2

θi
+ c2

12 · u2
γi

+ c2
13 · u2

ϕi−1
+

+c2
14 · u2

θi−1
+ c2

15 · u2
γi−1

(2.16)

where b0, . . . , b15 and c0, . . . , c15 are the sensitivity coefficients obtained as partial
derivatives of (2.15) with respect to each uncertainty source, i.e., the previous po-
sition P i−1 = (xi−1, yi−1), the depth measurements di and di−1 for the recognised
keypoint, the coordinate of the recognised keypoints (ϵi, ηi) and (ϵi−1, ηi−1), the ori-
entation measurements ϕi, θi, γi, ϕi−1, θi−1, and γi−1, the focal length c, and the
coordinates of the focal point (ϵo, ηo). Since the estimated position P i is obtained
from the previous position P i−1, the uncertainty values increase with the number of
position estimates. The uncertainty values related to the roll, pitch, and yaw angles
(uϕ, uθ, uγ) can be derived from the datasheet of the IMU sensor used on board
the UAV. For the uncertainty associated with the depth measurements, if the UAV
is equipped with an altimeter, the depth measurements are approximated to the
UAV altitude for all the recognised keypoints. In this case, ud is obtained from the
accuracy of the altimeter. The image coordinates (ϵ, η) of the recognized keypoints
are defined with respect to the top-left corner of the image frame, which is con-
sidered as the origin (0, 0). This convention aligns with standard image processing
practices and ensures consistent interpretation across different datasets and sensor
configurations.

On the other hand, if a LiDAR or RGB-D camera is available on the UAV, each
recognised key point can be associated with the depth measurements. Thus, ud

is obtained from the LiDAR or RGB-D camera accuracy. The camera calibration
process provides the uncertainties related to the intrinsic parameters ϵo, ηo, and c.
The uncertainties related to the coordinates of the keypoints in the image plane
(i.e., uϵ and uη) are affected by the atmospheric, lighting conditions, image blur-
ring and noise. To assess them, an analysis has been performed by considering a
MATLAB flight simulator that allows simulation of a UAV equipped with an RGB
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camera, which is flying in an urban environment with several environmental and
light conditions: (i) noon (ideal lighting conditions, sun altitude = 90 ◦, azimuth =
180 ◦); (ii) sunrise (sun altitude = 0 ◦, azimuth = 360 ◦), (iii) sunset (sun altitude
= 0 ◦, azimuth = 180 ◦); (iv) morning (sun altitude = 40 ◦, azimuth = 270 ◦); (v)
pre-sunset (sun altitude = 40 ◦, azimuth = 220 ◦). Subsequently, noise and blurring
are added to each image. Signal-to-Noise Ratio (SNR) values are between 5 dB and
40 dB, and the standard deviation of the Gaussian filter to model the blurring effect
is between 1 and 4.

The assessment of the uncertainties has been carried out through Monte Carlo
simulations for each keypoint detection algorithm (i.e., SIFT, SURF, FAST, Har-
ris, MEF, ORB, and semantic segmentation via DL): (i) 200 images are captured
from the simulated camera for each environmental and light condition, (ii) 50 key-
points are selected, uniformly distributed within the image, and these will be called
“original”, (iii) a dataset of 1000 images is generated from the initial test image,
with variations in brightness, noise, and blur applied, and (iv) for each image in the
dataset, keypoints are extracted using the selected algorithm within a region defined
according to the pixel coordinates of the “original” keypoints.

A Type A uncertainty assessment is carried out to estimate the uncertainty val-
ues uϵ and uη, once at least one keypoint is correctly recognised on 700 images.
This procedure was applied to an image obtained from the simulation of a flight
mission conducted using the Simulink-Unreal Engine of MATLAB. The obtained
uncertainty values for all the tested algorithms are reported in Tab. 2.4 in terms
of pixels [px]. In the case of FAST, it was not possible to assess the uncertainty as
no recognized keypoints were found in at least 700 images. The algorithm with the
lowest uncertainty was semantic segmentation (i.e., 1 px), while ORB performed the
best among traditional algorithms (i.e., 2 px).
The other uncertainty values considered in (2.16) have been derived from the datasheets
of commonly used payloads for implementing VIO navigation. In this study, the case
of a UAV with a LiDAR has been considered. In particular, the Zensume L1 speci-
fications are used: (i) uθ =0.025 ◦, uγ =0.025 ◦, and uϕ =0.15 ◦, (ii) ud =0.03 m, (iii)
the uncertainty at the initial position is fixed to ux0 = uy0 =0.1 m, and (iv) the focal
length uncertainty is uc = 0.01 · c.
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2.2.9 Flight simulation tests

Based on the model provided by the UAV Delivery Package available on MAT-
LAB [83], several modifications were made. The camera parameters selected for
the simulation include: (i) Camera focal length: c = 1109px, (ii) image resolution
1920 × 1080px, (iii) principal point 960 × 540px, (iv) no lens distortions, and (v) a
frame rate of 4 fps. The simulated UAV model is also equipped with an IMU sensor,
which provides roll, pitch, and yaw angles (in radians) with an acquisition period
of 0.25 s. The data from these sensors are not affected by external noise or inher-
ent uncertainties. The flight plan is created by integrating with QGroundControl,
which allows the path to be defined through a set of waypoints, with altitude above
the ground and UAV speed specified at each point. The chosen flight path for this
simulation is a closed-loop, maintaining a constant altitude of 50 m. In the Simulink
project, the Simulation 3D Scene Configuration block allows the selection of pre-
built scenes or the import of custom scenes into Unreal Engine. It also permits the
adjustment of atmospheric conditions. The scene used is US City Block [65], and
the atmospheric conditions for the simulation are as follows: (i) sun altitude = 90 ◦,
(ii) sun azimuth = 180 ◦, (iii) cloud opacity is 10 %, (iv) fog density is 0 %, and (v)
rain density is 0 %. These parameters simulate a sunny day around noon.
The Simulink model also provides the absolute position (reference) of the UAV for
each frame, characterized by three values along the North-South (NS) axis (i.e., y-
axis), the East-West (EW) axis (i.e., x-axis), and the flight altitude, within the US
City map. The two feature extraction algorithms exhibiting the lowest uncertainty
were tested, i.e., ORB and Semantic segmentation (see Table. 2.4). Figure. 2.15
depicts the estimated UAV trajectories in blue lines and the reference square-shaped
trajectory obtained from the simulator. Figure. 2.15a presents the trajectory esti-
mated using ORB as a feature extraction algorithm, while Figure. 2.15b depicts the
results obtained through the semantic segmentation. In both cases, the estimated
trajectories are compatible with the reference one according to the uncertainty val-
ues obtained from (2.16) for both x and y axes with a coverage factor k = 2. The
results demonstrate that the estimated trajectories closely align with the reference
trajectory, with the overlap confirming the accuracy and reliability of the analysed
approach. Figure. 2.16 shows how the Euclidean distance (∆) between the estimated
trajectories and the reference trajectory varies along the UAV’s path. The blue curve
represents ∆ for the ORB-based trajectory estimation, while the red curve corre-
sponds to the semantic segmentation-based estimation. The ORB-based method
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reaches a maximum ∆ of approximately 0.7 m, while the semantic segmentation-
based method peaks at about 0.8 m. Throughout the trajectory, the ORB method
generally maintains lower ∆ values than the segmentation-based method, particu-
larly in the central portion of the trajectory.
However, both methods demonstrate their capability to remain closely aligned with
the reference trajectory, with ∆ values consistently staying under 1 m. Figure. 2.17
shows how the uncertainty in the estimated trajectories increases with distance for
both the ORB and semantic segmentation methods, as expected. Semantic segmen-
tation demonstrates consistently lower uncertainty compared to ORB. This differ-
ence arises because the uncertainty in feature matching for semantic segmentation
is approximately half that of ORB. As a result, the semantic segmentation method
provides more reliable trajectory estimations with a slower growth in uncertainty
over the distance.

Figure 2.16: Euclidean distances between the estimated trajectories by means of ORB and semantic
segmentation and the reference one.

2.3 Underwater and VO Applications

Accurate VO in underwater environments is essential for a wide range of ap-
plications, including marine exploration, autonomous underwater vehicles (AUVs),
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Figure 2.17: Uncertainties with a coverage factor of 2 of the estimated trajectories by means of
ORB and semantic segmentation.

and underwater inspection[105]. Reliable VO enables these systems to navigate and
map unknown environments without external positioning systems, which are often
unavailable underwater [106]. The ability to estimate motion accurately from visual
inputs enhances the operational capabilities of underwater robots, contributing to
advancements in oceanography, environmental monitoring, and resource exploration
[107].

Underwater imaging introduces unique challenges distinct from terrestrial en-
vironments. Issues such as light absorption, scattering, and color distortion sig-
nificantly impair image quality, directly affecting VO performance. Longer wave-
lengths like red are disproportionately absorbed, reducing illumination. Scattering
from suspended particles creates haze, diminishing image contrast[108]. Addition-
ally, differential wavelength attenuation introduces a pervasive blue-green color cast,
complicating feature extraction and matching [109, 110]. Addressing these specific
challenges is crucial for achieving reliable underwater VO.

Existing research in underwater VO often struggles to address these challenges
comprehensively. Traditional feature detectors and descriptors like ORB, SIFT, and
BRISK are less effective underwater due to degraded image quality [111, 112, 113].
Furthermore, the selection of Random Sample Consensus (RANSAC) parameters
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[114] for robust model estimation is typically heuristic and may not be optimal for
underwater conditions. There is also a scarcity of publicly available underwater VO
datasets with ground truth for benchmarking and development.

This part of study addresses these gaps by making several key contributions:

1. Introduction of a new underwater VO dataset: A dataset collected using a
monocular camera in a controlled pool environment, including ground truth
for X and Z positions, camera intrinsic matrix, and distortion coefficients.

2. Novel preprocessing techniques for underwater images: Methods to correct color
distortion and reduce the blue-green color cast, enhancing image quality for
better feature extraction.

3. Comprehensive evaluation of feature detectors: Analysis of various feature ex-
traction methods, identifying AKAZE[115] as superior for underwater imaging
conditions.

4. Optimization of RANSAC threshold using genetic algorithms: Application of
a genetic algorithm to optimize the inlier threshold parameter in RANSAC,
improving the estimation of the essential matrix and overall VO performance.

2.3.1 Related Work

Traditional feature detectors like BRISK (Binary Robust invariant scalable key-
points), ORB (Oriented and Rotated BRIEF) and SIFT (Scale-Invariant Feature
Transform), while effective in terrestrial applications [116, 117], often underperform
underwater due to reduced contrast and blurred features, as evidenced by the re-
sults of this study (Section 2.3.4). Recent studies have explored tailored methods to
enhance feature detection in such environments. For instance, the Underwater Fea-
ture Extraction Network (UFEN)[118] employs cross-modal knowledge distillation
to train a neural network specifically for underwater feature detection and match-
ing, demonstrating significant improvements over traditional methods; however, its
computational complexity can limit real-time applicability. Additionally, datasets
like FLSea provide underwater visual-inertial and stereo-vision data[119], offering
benchmarks that better reflect underwater conditions, yet they may not encompass
the full spectrum of environmental variability found in natural underwater scenes.

Robust model estimation is critical for accurate VO, especially in the presence
of noise and outliers common in underwater imagery. The RANSAC[114] algorithm
is widely used for this purpose, but its effectiveness heavily depends on selecting
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an appropriate inlier threshold—a process often manual and suboptimal in dynamic
underwater environments. Adaptive approaches like Automatic RANSAC by Likeli-
hood Maximization [120] estimate the inlier threshold alongside model parameters,
enhancing robustness without manual tuning but may struggle with high outlier
ratios. Optimization techniques such as genetic algorithms [121] have been ap-
plied to fine-tune RANSAC parameters, improving model fitting in complex scenar-
ios; however, these methods have not been extensively explored in underwater VO.
These gaps highlight the need for specialized datasets, effective preprocessing tech-
niques, and adaptive optimization methods to advance underwater VO. This work
addresses the above-mentioned challenges by introducing a comprehensive under-
water VO dataset, proposing specialized image preprocessing, identifying the most
effective feature detector for underwater settings, and employing genetic algorithms
to optimize RANSAC thresholds for enhanced robustness and accuracy[122].

Figure 2.18: Sample image from the SUBVO dataset showing underwater visual conditions.

2.3.2 Dataset

The dataset utilized in this study, SUBVO (Submerged monocular Visual Odom-
etry), was collected using a crawler robot [123] equipped with a monocular camera
(IPC608UW-10 POE IP Underwater Camera) designed for aquaculture and under-
water inspection [124]. The camera captures images at a resolution of 1280 × 720
pixels in JPEG format. A total of 220 sequential images were acquired along a path
of 5.8 m within a stable pool environment. The pool has a depth of 1.60 m, providing
consistent underwater conditions. Ground truth data for the X and Z positions were
measured using a series of colored labels fixed to a chain securely anchored to the
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subfloor of the pool. These labels served as reference points, allowing precise track-
ing of the robot’s position along the predefined path. The positions of the labels were
measured before the data collection process, ensuring reliable ground truth for the
evaluation of the VO system’s performance. Additionally, the camera intrinsic ma-
trix and distortion coefficients were obtained through calibration procedures, which
are essential for correcting lens distortions and ensuring precise motion estimation.
This dataset includes both the raw image sequences and the associated calibration
parameters. The dataset is publicly available and was provided by the LESIM Lab-
oratory at the University of Sannio, Italy in collaboration with the OBSEA Lab
from the Polytechnic University of Catalonia (UPC) in Vilanova i la Geltrú, Spain.
This collaborative effort aims to support research in underwater robotics and VO
by offering a resource that addresses the specific challenges of underwater imaging.

The dataset is available on https://github.com/A8neyestani/SUBVO

2.3.3 Methodology

The proposed approach enhances underwater monocular VO by addressing the
specific challenges inherent in underwater imaging. It comprises image preprocessing
to mitigate visual distortions, evaluation of various feature extraction and match-
ing methods, optimization of the RANSAC inlier threshold via a genetic algorithm
(GA) [125], and a refined pose estimation incorporating rotation clipping. The
Genetic Algorithm (GA) was chosen due to its suitability for solving non-convex
optimization problems with multiple local minima, where gradient-based methods
might fail or converge to suboptimal solutions. GA does not require gradient infor-
mation and can efficiently explore a wide solution space, making it well-suited for
hyperparameter tuning and threshold selection in scenarios with noisy or nonlinear
objective functions. Its population-based nature also increases the chances of global
optimality, especially when the search space is not smooth or differentiable.

Underwater images often suffer from color distortion, low contrast, and haze due
to light absorption and scattering, which degrade image quality and hinder feature
detection. To address these issues, a preprocessing step enhances image quality, as
shown in Figure. 2.19. This method builds on prior techniques such as LAB color
space transformations and histogram equalization [126, 127], while introducing a
streamlined and computationally efficient red channel enhancement.

First, the input image is converted from RGB to LAB color space to separate lu-
minance (L channel) from chromaticity (A and B channels). Histogram equalization

https://github.com/A8neyestani/SUBVO
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Figure 2.19: Comparison of the original underwater image (left) and the preprocessed image (right)
after applying white balancing and blue-green color cast reduction, enhancing contrast and color
balance for improved feature detection.

is applied to the L channel to improve contrast.
The equalized L channel is merged with the original A and B channels, and the

image is converted back to RGB. To reduce the blue-green color cast, the red channel
intensity is enhanced via a linear transformation, compensating for color loss:

Imageadjusted = 0.75 · Image + 50. (2.17)

Unlike prior work, which often uses complex nonlinear adjustments [126], this ap-
proach employs a simple linear transformation for red channel enhancement, striking
a balance between image quality and computational efficiency. This makes it par-
ticularly suitable for real-time underwater applications.

Seven feature extraction methods are evaluated to identify the most effective for
underwater VO: ORB [40], SIFT [128], BRISK [129], KAZE [130], AKAZE [115],
and combinations of FAST (Features from Accelerated Segment Test) with BRIEF
(Binary Robust Independent Elementary Features) and FREAK (Fast Retina Key-
point) [131, 132] descriptors. For each method, keypoints are detected, and de-
scriptors are computed. Descriptor matching is performed using the Brute-Force
matcher with appropriate distance metrics: Hamming distance for binary descrip-
tors (ORB, BRISK, AKAZE, BRIEF, FREAK), and Euclidean distance (L2 norm)
for SIFT and KAZE. Matches are sorted based on distance, retaining the best to
ensure reliability [133, 134]. This process aims to identify consistent and accurate
correspondences between consecutive frames, which is crucial for reliable motion
estimation.

RANSAC is sensitive to the inlier threshold parameter, significantly affecting the
estimation of the essential matrix E. A GA is employed to optimize this threshold
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for underwater conditions. Each individual in the population represents a potential
threshold value τ , and the fitness function is defined as the root mean square error
(RMSE) between the estimated trajectory and the ground truth:

RMSE(τ) =

√√√√ 1
N

N∑
i=1

(
(xi − xgt

i )2 + (zi − zgt
i )2

)
. (2.18)

Lower RMSE values indicate better thresholds. The GA operations include tour-
nament selection with size three, blend crossover with α = 0.5, and Gaussian muta-
tion with mean µ = 0, standard deviation σ = 0.1, and mutation probability p = 0.2.
The algorithm runs for ten generations with a population size of 20, searching for
the optimal τ minimizing RMSE for each feature extraction method. It is impor-
tant to note that the optimized value of the threshold τ is closely related to the
specific conditions under which the training data were acquired, especially lighting
conditions and image contrast. In scenarios with significantly different illumination
or visual characteristics, the previously optimized τ may no longer provide reliable
results. In such cases, a re-optimization process using newly acquired data and
corresponding ground truth measurements may be necessary to ensure consistent
detection performance. Therefore, the threshold τ should be considered adaptive or
context-specific, rather than universally fixed.

With the optimized RANSAC threshold, camera motion between consecutive
frames is estimated. Given matched points p1 and p2, the essential matrix E [113,
117] is computed from the intrinsic matrix K obtained from camera calibration:

Eopt = arg min
E

∑
i

(
p⊤

2 K
−⊤EK−1p1

)2
(2.19)

RANSAC with threshold τ handles outliers. The essential matrix E is done along
with Singular Value Decomposition (SVD) to obtain rotation R and translation t

between frames:

[R, t] = recoverPose(E, p1, p2, K). (2.20)

To mitigate abrupt rotational changes caused by noise, rotation clipping is ap-
plied. During experimentation, it was observed that the estimated rotation occa-
sionally exhibited unrealistic jumps that were not physically plausible in the context
of the underwater environment. To address this, the rotation matrix R is converted
to Euler angles θ = [θx, θz], and each angle is clipped to a maximum absolute value
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θmax = 40◦. This threshold was selected based on the statistical distribution of
observed rotations, ensuring that the majority of valid motions are preserved while
suppressing anomalous outliers.

θi = clip(θi, −θmax, θmax). (2.21)

The clipped rotation matrix Rclipped is reconstructed from the clipped Euler an-
gles. The current pose is updated using the transformation matrix T :

T =
Rclipped s · t

0⊤ 1

 , (2.22)

where s is a scale factor determined empirically to maintain the trajectory length
consistent. The cumulative pose P is updated iteratively:

Pcurrent = Pprevious · T. (2.23)

This process is repeated for each frame pair, resulting in the estimated trajectory.
In Figure. 2.20, you can find the pipeline of the proposed approach in this study.

Camera calibration parameters (intrinsic matrix K and distortion coefficients)
are obtained using a standard checkerboard pattern [135, 136, 137]. The calibration
process utilized 34 images of a checkerboard pattern underwater with internal corner
dimensions of 9 × 6 (columns, rows) and square size of 0.022 m. The methodology
is implemented in Python 3.11 using OpenCV for image processing and feature
detection, and DEAP [137] for the GA. A sequence of underwater images is then
processed to estimate camera motion and reconstruct the trajectory.

2.3.4 Experimental Results

Extensive experiments were conducted using the dataset described previously to
evaluate the performance of the proposed VO system under underwater conditions.
The primary objective was to assess the accuracy and robustness of different feature
extraction methods when integrated into the VO pipeline optimized with the GA
for the RANSAC inlier threshold.

The following metrics were used to quantitatively assess the performance of each
method:

• Root Mean Square Error (RMSE): Measures the average deviation be-
tween the estimated trajectory and the ground truth, providing an overall in-



Advances in Monocular Visual Odometry 65

Figure 2.20: Pipeline of the proposed underwater VO approach, including preprocessing, feature
extraction, pose estimation, RANSAC optimization, and performance evaluation..

dication of accuracy.

• Mean Error: Represents the mean of the positional errors, indicating any
systematic bias in the estimates.

• Standard Deviation: Reflects the variability in the positional errors, indicat-
ing the consistency of the method. The standard deviation is calculated by first
determining the error as the point-by-point difference between the estimated
trajectory and the ground truth. This results in a vector of positional errors.
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2.3.5 Results and Analysis

Table 2.5: Performance of Feature Extraction Methods with GA-Optimized RANSAC Thresholds

Method RMSE (m) Mean Error (m) Standard Deviation (m) Optimized RANSAC Threshold
AKAZE 0.07 0.05 0.04 0.18
BRISK 0.18 0.10 0.15 0.59
FAST+BRIEF 1.15 0.53 1.02 0.74
FAST+FREAK 0.71 0.43 0.56 0.60
KAZE 0.40 0.23 0.32 0.18
ORB 0.56 0.22 0.51 0.42
SIFT 0.66 0.18 0.63 2.12

Figure. 2.21 and Table 2.5 summarize the performance metrics for each feature
extraction method evaluated. The experimental results demonstrate that the choice
of feature extraction method significantly affects the accuracy and robustness of
the underwater VO system. The AKAZE method achieved the lowest RMSE of
0.07 m, indicating the highest accuracy among the evaluated methods. Its mean
error of 0.05 m suggests a slight underestimation in positional estimates, while the
low standard deviation of 0.04 m indicates high consistency and reliability.

In contrast, methods like FAST+BRIEF and FAST+FREAK exhibited substan-
tially higher RMSE values of 1.1584 meters and 0.71 meters, respectively. These
higher errors can be attributed to the inability of these methods to extract robust
and distinctive features in underwater conditions, leading to poor matching and
inaccurate pose estimation.

The BRISK method showed moderate performance with an RMSE of 0.18 me-
ters. While it outperformed methods like ORB and SIFT, it was still less accurate
than AKAZE. The KAZE method, despite being similar to AKAZE, resulted in a
higher RMSE of 0.40 meters and a more negative mean error, indicating an overall
underestimation of the trajectory.

ORB and SIFT methods yielded RMSE values of 0.56 meters and 0.67 meters,
respectively. Although these methods are widely used in terrestrial VO applica-
tions, the performance degrades in underwater environments due to the challenges
in feature detection and matching caused by visual distortions.

In Figure. 2.22, the impact of different RANSAC thresholds on AKAZE is il-
lustrated, showcasing how the optimized thresholds, determined via a genetic al-
gorithm, varied significantly across methods. AKAZE and KAZE required lower
thresholds (0.1801 and 0.1836, respectively), suggesting that these methods ben-
efited from stricter inlier criteria during model estimation. On the other hand,
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methods like SIFT required a much higher threshold of 2.1246, indicating the ne-
cessity to accommodate more variability in feature correspondences, possibly due to
less distinctive features in the underwater context.

Figure 2.21: Comparison of estimated paths (red) using different feature detectors with the ground
truth (blue) for underwater monocular VO.

Figure 2.22: Estimated paths with RANSAC thresholds (0.24, 0.13, 0.18) compared to ground
truth (dashed black line). RMSEs: 0.26 m (0.24), 0.15 m (0.13), 0.07 m (0.18). RANSAC 0.18
shows the best result.

2.3.6 Discussion

The superior performance of AKAZE can be attributed to its ability to detect
and describe features that are robust to the scale and nonlinear intensity variations
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common in underwater images. AKAZE utilizes nonlinear scale spaces based on
diffusion equations, which are more effective in capturing essential structures in
images affected by unique underwater visual characteristics [134, 115].

The genetic algorithm’s optimization of the RANSAC inlier threshold proved
crucial in enhancing the VO system’s performance. By tailoring the threshold to
each feature extraction method, the algorithm improved the robustness of model
estimation against outliers, which are prevalent in underwater imagery due to noise
and distortions.

The high RMSE and standard deviation values observed for FAST-based methods
highlight the limitations of using simple corner detectors and binary descriptors in
challenging underwater environments. These methods may fail to capture sufficient
distinctive features, leading to incorrect matches and erroneous pose estimates.

Overall, the results emphasize the importance of selecting appropriate feature ex-
traction methods and tuning algorithm parameters to address the specific challenges
of underwater VO. The combination of effective preprocessing, robust feature detec-
tion with AKAZE, and optimized RANSAC parameters contributes to significant
improvements in accuracy and consistency.

Figure. 2.22 illustrates the estimated trajectories obtained using the AKAZE
method alongside the ground truth path and different RANSAC thresholds. The
AKAZE-based trajectory closely follows the ground truth, demonstrating the method’s
effectiveness.

To assess the statistical significance of the performance differences among the
methods, a paired t-test was conducted between the errors of AKAZE and each of
the other methods. The results indicate that AKAZE’s performance improvements
are statistically significant with p-values less than 0.01 in all cases. This reinforces
the conclusion that AKAZE is the most suitable feature extraction method for un-
derwater VO in the context of this study.

2.4 Conclusion

This chapter has explored the advancements in Monocular VO, emphasizing its
critical role in autonomous navigation across aerial, terrestrial, and underwater envi-
ronments. Traditional feature-based VO methods, such as ORB, SIFT, and BRISK,
were analyzed in comparison with modern deep-learning approaches and sensor fu-
sion techniques. The experimental results demonstrated that feature detection and
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matching are fundamental to the performance of VO systems, particularly in chal-
lenging environments where visual conditions degrade image quality. For exam-
ple, AKAZE outperformed other feature extraction methods in underwater environ-
ments, achieving the lowest Root Mean Square Error (RMSE) of 0.07 m, with a
mean error of 0.05 m and a standard deviation of 0.04 m, significantly improv-
ing motion estimation accuracy. In contrast, traditional techniques like ORB and
SIFT exhibited RMSE values of 0.56 m and 0.66 m, respectively, indicating their
reduced reliability in such conditions.

The chapter also examined the impact of uncertainty modeling on VO perfor-
mance, showcasing how different feature extraction techniques influence localization
precision. Sensitivity analyses highlighted the effectiveness of VIO in mitigating
scale drift and improving accuracy, particularly when integrating LiDAR, IMU, and
RGB-D data. The experimental validation showed that uncertainty increased over
time in VO-based UAV navigation, with expanded uncertainty exceeding 5 m after
20 position estimates when using high-noise feature detection methods. However,
through improved feature extraction algorithms and optimized RANSAC thresholds
(e.g., 0.18 for AKAZE, compared to 2.12 for SIFT), the accuracy of trajectory
estimation was significantly enhanced. The UAV-based flight simulation validated
the VO framework, with ORB-based trajectory estimates deviating by 0.7 m from
the reference path, while the deep learning-based semantic segmentation approach
reduced the deviation to 0.5 m, proving more robust in diverse lighting conditions.

Key takeaways from this chapter include:

• Feature selection critically impacts VO accuracy, with AKAZE achiev-
ing the best results in underwater environments, while deep learning-based
segmentation showed promise in UAV-based navigation.

• Sensor fusion techniques, particularly VIO, significantly reduce localiza-
tion drift, achieving a correlation coefficient above 0.93 in flight simulations.

• Uncertainty modeling is essential for trajectory prediction, with sen-
sitivity analyses showing that feature detection errors can cause deviations of
over 5 m if not properly accounted for.

• Optimization techniques, such as Genetic Algorithms (GA), improved
RANSAC threshold selection, reducing trajectory errors by over 50% in
underwater VO applications.

• Real-time applicability remains a challenge, with deep learning-based
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methods requiring higher computational resources but offering improved ro-
bustness in complex scenarios.

Overall, the advancements in Monocular VO presented in this chapter demon-
strate substantial progress in feature extraction, uncertainty modeling, and sensor
fusion. However, challenges remain in optimizing real-time performance, adapt-
ing VO techniques to extreme environmental conditions, and improving trajectory
stability in long-term applications. Future research should focus on enhancing deep
learning-based solutions, integrating multi-sensor data fusion, and developing robust
datasets for benchmarking next-generation VO systems.



Chapter 3

UAVs and Deep Learning for
Structural Monitoring

This section builds upon two papers recently published in IEEE conferences,
showcasing advancements in UAV-based structural health monitoring and deep
learning applications. The first paper, presented at the 2023 7th International
Conference on Internet of Things and Applications [138], introduces an innova-
tive approach for crack detection and segmentation in civil infrastructures using
images gathered by UAVs and the YOLOv8-seg model. This approach leverages
transfer learning, sample matching, and optimized loss functions to automate crack
detection, significantly enhancing productivity, precision, and cost-efficiency. While
primarily designed for infrastructure maintenance, its applications extend to the
broader IoT ecosystem, offering transformative possibilities for real-time inspections.

The second paper, published in the 2024 IEEE International Conference on
Metrology for eXtended Reality, Artificial Intelligence, and Neural Engineering
(MetroXRAINE) [139], focuses on a novel triplet loss-based method for concrete
crack verification. Using a Siamese network inspired by FaceNet, this method en-
ables evolution-centric monitoring of cracks, critical for predictive maintenance and
the development of digital twins. By achieving high accuracy (97.36%) and precision
(95.77%), this approach highlights the potential of combining advanced machine
learning techniques with digital twin frameworks to improve infrastructure safety
and lifecycle management. Together, these contributions form the foundation for
the innovative methods and systems presented in this thesis.

71
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3.1 UAV-Based Structural Monitoring

The integrity of civil infrastructure is critical for public safety and economic sta-
bility. Traditional inspection methods for structural monitoring, such as manual
crack detection, are often labor-intensive, prone to human error, and fail to pro-
vide the precision needed for early fault detection. The advent of UAVs and the
integration of advanced technologies like deep learning and IoT have significantly
transformed this field by enabling more efficient, accurate, and cost-effective moni-
toring solutions [140, 141].

3.1.1 Challenges in Infrastructure Inspection

Despite the promise of IoT and UAVs, infrastructure inspection still faces sig-
nificant challenges. Current methodologies suffer from limited autonomy, requiring
human intervention, and are hindered by reduced accuracy in damage detection,
susceptibility to environmental conditions, and difficulties in processing extensive
high-resolution data. Additionally, regulatory constraints, safety concerns, and high
implementation costs compound the complexities of large-scale deployment. Ad-
dressing these limitations necessitates the development of innovative solutions for
accurate and scalable inspections [141, 142].

The limitations identified above highlight the need for advanced object detec-
tion models that can overcome these challenges. For instance, the "You Only Look
Once" (YOLO) models, particularly the YOLOv8 series, offer high-speed inference
with improved precision, making them suitable for edge devices like UAVs equipped
with IoT-enabled systems. However, the computational demands and memory re-
quirements of larger models, such as YOLOv8-large, pose additional challenges for
deployment on lightweight UAV systems [143, 144].

3.1.2 Related Work on Crack Detection

Recent research highlights the advancements in crack detection, leveraging deep
learning models to enhance structural health monitoring. The integration of UAVs
for automated inspections is well-established, with a focus on developing efficient and
accurate crack detection techniques. Agnisarman et al. reviewed automated UAV
visual inspection techniques, identifying bridge inspection as the most frequently
addressed domain among automation-assisted monitoring applications [145]. Sim-
ilarly, Greenwood et al. emphasized the integration of UAVs with convolutional
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neural networks for detecting structural cracks and assessing their progression [146].

The importance of machine learning techniques, particularly YOLO models, in
enabling UAV-based monitoring is well-documented. YOLOv8 has proven effective
for real-time object detection and crack segmentation, delivering high accuracy and
throughput for infrastructure inspections [143, 144]. While UAVs inherently provide
flexibility in infrastructure monitoring, ongoing research focuses on optimizing deep
learning models for edge computing to enable real-time processing on lightweight
UAV platforms. Multi-modal approaches integrating LiDAR and thermal imaging
further enhance the detection of cracks in challenging environments [147].

Recent advancements in deep learning, particularly with YOLO models, have
significantly enhanced the efficiency and accuracy of these tasks. For instance, an
improved YOLOv8 model was developed to detect concrete surface cracks, achiev-
ing a Mean Average Precision at an Intersection over Union (IoU) threshold of 50%
(mAP50) increase of 15.2% on the RDD2022 dataset and 12.3% on the Wall Crack
dataset, with a detection speed of 88 frames per second, facilitating real-time ap-
plication [148]. In another study, a two-stage convolutional neural network (CNN)
model combining AlexNet and YOLO was employed for crack classification and seg-
mentation. This model achieved a classification accuracy exceeding 90%, while the
segmentation network successfully identified and delineated cracks in 85.71% of the
images. These results underscore the model’s proficiency in both detecting and seg-
menting structural cracks, highlighting its potential as a reliable tool for enhancing
the maintenance and safety of architectural structures [149]. Additionally, a study
proposed a multi-scale CNN-based architecture to enhance crack detection accu-
racy. Evaluated using the Middle East Technical University dataset, which consists
of 20,000 crack and non-crack images, the outcomes showed high performance with
precision, recall, and accuracy rates of 99.3%, 99.9%, and 99.96%, respectively. This
approach demonstrates the effectiveness of multi-scale feature learning in improving
the detection of concrete cracks [150]. YOLO models have been pivotal in advanc-
ing real-time object detection for infrastructure monitoring. The latest YOLOv8
model offers superior throughput and high-speed inference, with variations opti-
mized for edge devices [143, 144]. These capabilities make YOLO a valuable tool
for UAV-based crack detection and monitoring, particularly in scenarios requiring
rapid response times.

In addition to visual inspection, UAVs equipped with advanced sensors, such as
LiDAR and infrared cameras, enable multi-modal data collection, enhancing the
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detection of structural anomalies. However, existing UAV-based crack detection
methods face significant limitations in cost-effectiveness and scalability, particularly
when deployed in large-scale infrastructure networks. Challenges include the high
computational demands of deep learning models for real-time processing, the impact
of adverse environmental conditions such as poor lighting and occlusions, and the
need for robust generalization across varying surface textures and crack types. Fur-
ther research is required to optimize lightweight models, improve detection under
challenging conditions, and enhance automated adaptability to diverse infrastruc-
ture settings [146, 142].

3.2 Automated Crack Detection Using Deep Learning

This section presents an innovative approach to the detection and segmenta-
tion of cracks in civil infrastructure. It can be applied to UAVs to gather image
data, which are then analyzed by a separate system utilizing a Deep Learning ap-
proach based on You Only Look Once Version 8 (YOLOv8l-seg) object detection
model. The primary goal of this approach is to automate the crack detection pro-
cess with a novel integration of optimized YOLOv8l-seg models, leveraging transfer
learning and adaptive sample matching to enhance precision. Unlike traditional
methods, this system specifically addresses the challenges of real-time detection un-
der varying environmental conditions and reduces false positives through advanced
loss functions. These enhancements contribute to improved reliability in UAV-based
inspections while ensuring adaptability across diverse infrastructure types. The sys-
tem is trained using a Crack Dataset and employs transfer learning with YOLO
V8, sample matching, and loss functions to enhance its performance. Although
initially designed for civil infrastructure maintenance, the system’s potential appli-
cations extend to the broader field of the IoT, offering the possibility to revolutionize
infrastructure inspections.

3.2.1 YOLO-Based Segmentation Models

The proposed method for real-time detection and segmentation of cracks in civil
infrastructures comprises the steps described in the following subsections, primarily
involving the use of a Crack Dataset, YOLOV8 with transfer learning, and specific
matching and loss methods.
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3.2.2 Dataset Preparation

The first step involves utilizing the Crack Dataset [151, 152], which contains
various examples of infrastructure with and without cracks. These images form the
foundational data for training the model. Each image in the dataset is annotated
with the location of the cracks, providing the model with "ground truth" examples to
learn from. The dataset employed in this study comprises 8816 labeled samples, each
associated with corresponding annotations indicating the presence and location of
cracks. The labeling process was conducted manually by expert annotators using a
graphical annotation tool, ensuring accurate and consistent ground truth definitions.
Each image was reviewed to identify visible cracks, and bounding boxes were created
around the regions of interest.

3.2.3 Transfer Learning with YOLO V8

For model training, transfer learning has been implemented with YOLO V8.
Transfer learning leverages the knowledge gained from pre-training the model on a
large-scale dataset to enhance the learning process on a smaller target dataset [153].
In this case, the YOLO V8 base model, pre-trained on extensive image datasets such
as COCO or ImageNet [154], is fine-tuned on the Crack Dataset. This approach
significantly reduces the time and computational resources required for training
while improving the model’s accuracy.

3.2.4 Sample Matching

YOLOv8 adopts the Task-Aligned Assigner (TAA) for sample matching, diverg-
ing from traditional IoU methods [155]. IoU measures the ratio of the intersection
area between the predicted and ground truth bounding boxes to their union, pri-
marily assessing spatial overlap. While IoU is effective for evaluating localization
accuracy, it does not consider the confidence score of predictions or the relevance
of object categories. This limitation can result in improper sample assignments,
particularly in cases of occlusions or closely positioned objects.

TAA improves sample matching by optimizing both classification and localization
simultaneously. Unlike IoU-based methods, which rely strictly on spatial overlap,
TAA dynamically adjusts the weighting of each bounding box by incorporating
confidence scores and semantic alignment with ground truth objects. This enables
a more balanced selection of samples, ensuring that both correctly localized and
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semantically relevant detections are prioritized. As a result, TAA reduces false
positives and improves overall detection accuracy, particularly in dense and complex
environments.

3.2.5 Loss Function

YOLO V8 employs a combination of loss functions designed to optimize object
detection by balancing classification accuracy, localization precision, and objectness
estimation. These loss functions work synergistically to ensure the model can cor-
rectly identify objects while maintaining precise bounding box predictions.

• Variance Focal Loss (VFL): Used for classification loss, it addresses class
imbalance by reducing the impact of easily classified examples and emphasizing
harder-to-classify cases. It is defined as:

V FL(pt) = −(1 − pt)γ log(pt)

where pt represents the model’s estimated probability for the true class, and γ is
a focusing parameter that reduces the contribution of easy examples while em-
phasizing difficult-to-classify cases. This improves precision in complex scenes.

• Objectness Loss: This loss function evaluates how confidently the model
predicts whether an object exists within a given bounding box. YOLO V8
refines objectness estimation by using focal loss variants that prioritize hard
negative samples, preventing excessive false positives.

• Distance-IoU (DIoU) Loss and Distance Focal Loss (DFL): These func-
tions refine bounding box predictions by considering spatial relationships be-
tween predicted and ground truth boxes. DIoU is given as:

DIoU = IoU − ρ2(u, gt)
c2 − ν

where ρ is the Euclidean distance between the centers of the predicted bound-
ing box u and the ground truth bounding box gt, c is the diagonal length of the
smallest enclosing box covering both, and ν accounts for aspect ratio consis-
tency. Unlike standard IoU, DIoU minimizes center distance errors, improving
localization in UAV-based crack detection.
The Distance Focal Loss (DFL) is an enhancement that smooths bounding
box regression by encouraging more accurate box refinement, particularly for
small cracks and fine defects.
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• Total Loss Combination: The total loss function integrates classification,
objectness, and localization components to ensure an optimal trade-off between
precision and recall. It is defined as:

Total Loss = λ1 ·VFL Loss+λ2 ·(DFL Loss+DIoU Loss)+λ3 ·Objectness Loss

where λ1, λ2, and λ3 are weighting factors that balance the impact of each loss
term. The inclusion of objectness loss ensures better detection reliability in
UAV-based inspections, while DIoU and DFL improve the accuracy of bounding
box placement, especially for irregularly shaped cracks.

In summary, the total loss function combines classification loss and localization
loss components, which allow the model to optimize object detection tasks effectively,
focusing on both classification accuracy and bounding box regression.

3.2.6 Implementation

The implementation of the proposed method for real-time detection and segmen-
tation of cracks in civil structures was executed with the assistance of advanced
hardware and sophisticated software libraries.

For the computation-intense process of training the YOLO V8 model using trans-
fer learning, a high-performance GPU NVIDIA TESLA V100 TENSOR CORE [156]
was used. This specific GPU was chosen due to its powerful capabilities to handle
large volumes of data and perform fast computations, a necessary requirement for
efficient and effective model training.

The programming and model implementation were done using the Ultralytics
library [157], a popular choice for implementing YOLO models. Ultralytics provides
a user-friendly interface and a wide array of tools to customize and optimize the
YOLO models. The dataset used for the training, validation, and test comprised
8816 samples. This was split into a training set of 7050 images, a validation set of
1322 images, and a test set of 522 images. Some samples from the test set are shown
with the corresponding detection are shown in Figure 3.1.

A variety of hyperparameters were fine-tuned to optimize the performance of the
model. The model was trained for a total of 20 epochs with a batch size of 16,
and an image size of 448. The Stochastic Gradient Descent (SGD), Adam, and RM-
SProp optimizers were experimented with for the model training [158]. The learning
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Figure 3.1: Six samples of crack detection and segmentation. The red area has predicted by our
model and the green line is the ground truth border.

rate was initially set at 0.01, with a decay factor of 0.01. A momentum of 0.937
and a weight decay of 0.0005 were also set. The choice of hardware, software, and
hyperparameters was done keeping in mind the objective of the study - to develop
a real-time crack detection and segmentation model. The NVIDIA TESLA V100
TENSOR CORE GPU provided the computational power required [159], the Ultra-
lytics library offered a convenient and versatile platform for implementing the YOLO
V8 model, and the tuning of various hyperparameters ensured the model was trained
to deliver the best possible performance [156]. Five different sizes of YOLO V8 had
been retrained: Nano (YOLOv8n-seg), Small (YOLOv8s-seg), Medium (YOLOv8m-
seg), Large (YOLOv8l-seg), and X-Large (YOLOv8x-seg). This allowed us to ex-
plore the impact of model size on detection performance, and determine the optimal
size for our specific application. Detailed information about these different model
sizes can be found in Table 3.1.

Table 3.1: Comparison of YOLOv8 model sizes and performance metrics.

Model Epochs Trainable Layers Parameters Speed (ms) Precision F1 Score
YOLOv8n-seg 20 23 3.26M 1.2 0.85 0.64
YOLOv8s-seg 20 23 11.79M 1.5 0.86 0.64
YOLOv8m-seg 20 23 27.24M 2.2 0.87 0.63
YOLOv8l-seg 20 23 45.93M 2.9 0.87 0.62
YOLOv8x-seg 20 23 71.75M 4.3 0.86 0.63

3.2.7 Evaluation with Discussion

To verify the model’s efficiency, the test data has used 522 samples that were
excluded from the training process. This independent evaluation provides a realistic
measure of model performance on unseen data. The model’s performance was as-
sessed using the F1 Score and Precision [160], which are crucial indicators for object
detection tasks.

Precision: It gauges the model’s accuracy by measuring the proportion of cor-
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rectly identified cracks to all detections made by the model. Higher precision implies
a lower rate of false positives. It is calculated as:

Precision = True Positives

True Positives+ False Positives

F1 Score: The F1 Score is a harmonic mean of Precision and Recall, providing
a balance between these measures. It is especially useful for imbalanced datasets
and is computed as:

Recall = True Positives

True Positives+ False Negatives

F1 Score = 2 · Precision ·Recall
Precision+Recall

Additionally, the average and standard deviation of these metrics were calculated
across multiple runs to gain a better understanding of the model’s performance.

Table 3.1 provides valuable insights into the performance of the five different
sizes of the YOLOv8 model trained on the Crack Dataset: Nano (YOLOv8n-seg),
Small (YOLOv8s-seg), Medium (YOLOv8m-seg), Large (YOLOv8l-seg), and X-
Large (YOLOv8x-seg). These models were all trained for 20 epochs and exhibit
differing performance characteristics. Figure 3.2 provides a result analysis of pro-
cessing the medium size of YOLO V8 which is roughly similar to other sizes.

Looking at the Average Precision, it seems that the models have quite similar
performance, ranging from 0.85 to 0.87. It’s interesting to note that the larger
models (YOLOv8l-seg and YOLOv8x-seg) do not offer significant improvements in
precision over the smaller ones (YOLOv8n-seg and YOLOv8s-seg). This might be
due to overfitting, which can occur when models with a larger number of trainable
parameters are used [161].

Regarding the F1 Score, all the models show comparable average performance,
from 0.62 to 0.64. The standard deviation of the F1 Score, which indicates the con-
sistency of the model’s performance, remains relatively constant across the different
models, hinting at a similar level of reliability in their predictions. As for speed,
measured in milliseconds (ms) on the NVIDIA V100 Tensor Core GPU, there is a
clear trend of increasing inference time with larger models. While YOLOv8n-seg ex-
hibits the fastest speed (1.2 ms), the X-Large model, YOLOv8x-seg, has the slowest
speed (4.3 ms). This can be attributed to the higher complexity and greater number
of trainable parameters in larger models, leading to longer processing times.

From a practical standpoint, the choice of model size should consider the trade-
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Figure 3.2: The result of training progress of the Medium model follows as these figures, which are described as follows:
train/box_loss: The loss or error in the bounding box prediction during the training phase, train/seg_loss: The loss or
error in the segmentation prediction during the training phase, train/cls_loss: The loss or error in the classification pre-
diction during the training phase, train/dfl_loss: The loss or error in the deformation field prediction during the training
phase, metrics/precision(B): Precision metric for the bounding box prediction on the training data, metrics/recall(B):
Recall metric for the bounding box prediction on the training data, metrics/mAP50(B): Mean Average Precision at 50%
IoU threshold for the bounding box prediction on the training data, metrics/mAP50-95(B): Mean Average Precision in
the range of 50% to 95% IoU threshold for the bounding box prediction on the training data, metrics/precision(M):
Precision metric for the mask segmentation prediction on the training data, metrics/recall(M): Recall metric for the
mask segmentation prediction on the training data, metrics/mAP50(M): Mean Average Precision at 50% IoU threshold
for the mask segmentation prediction on the training data, metrics/mAP50-95(M): Mean Average Precision in the range
of 50% to 95% IoU threshold for the mask segmentation prediction on the training data, val/box_loss: The loss or error
in the bounding box prediction during the validation phase, val/seg_loss: The loss or error in the segmentation prediction
during the validation phase, val/cls_loss: The loss or error in the classification prediction during the validation phase,
and val/dfl_loss: The loss or error in the deformation field prediction during the validation phase.

off between precision, F1 Score, and computational efficiency. While larger models
may theoretically provide minor improvements in precision, these benefits must be
weighed against the increased computational demands they impose. In resource-
limited scenarios, the smaller YOLOv8 variants might be a more viable option,
providing a good balance between performance and computational efficiency.

The F1 score is less than ideal not because of a lack of accurate detection, but
due to the larger margin of detection as you can see in Figure 1. The model is likely
marking larger areas as detections than the actual size of the cracks, leading to
more false positives. Precision is more concerned with the relevance of the detected
instances (how many detected cracks are actual cracks), while the F1 score also
considers recall, which assesses how many of the actual cracks were detected. As the
model is more free in its detection, marking larger areas as detections, it is capable
of detecting most if not all cracks (high recall) but at the expense of marking some
areas incorrectly as cracks (false positives). This results in good crack detection but
lower precision and, subsequently, a lower F1 score.
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3.3 Triplet Loss-Based Crack Verification

Incorporating the proposed approach and focusing on the concept of monitoring
the evolution of cracks over time in civil structures, this section proposes for the
first time this concept with a novel methodology for crack verification and also with
the perspective of identification of cracks. This method aims to precisely track and
compare the characteristics of specific cracks over time, utilizing advanced image
embedding techniques. By embedding images of the observed structure at different
times, the approach leverages deep learning algorithms, specifically a Siamese net-
work with ResNet [162, 163], to generate high-dimensional embeddings that capture
the unique features of each crack. This enables the identification of the exact same
crack across multiple observations, facilitating a detailed analysis of its development.
Such a capability is critical for assessing the structural health of civil infrastructures,
allowing for timely interventions based on the progression of damage rather than
just its presence. This evolution-centric perspective on crack analysis is pioneering,
offering a more dynamic and informed approach to structural health monitoring.

The proposed model is inspired by the FaceNet architecture [164], which has rev-
olutionized face recognition by learning to encode faces into a compact embedding.
Similarly, the proposed model encodes images of concrete surfaces into a feature-rich
embedding space, where the distance between points corresponds to the similarity
of the crack patterns they represent. The training dataset is derived from a "Crack
dataset," [152] which has been enriched with data augmentation techniques such as
shearing and rotations to generate triplets of images: an anchor (a reference image),
a positive (an image with a similar crack pattern to the anchor), and a negative
(an image with a different crack pattern). This approach is novel in the context of
concrete crack verification and is particularly suited for the analysis of evolutionary
patterns of cracks, which is critical for predictive maintenance and the assessment
of structural health.

The performance of the proposed model will be evaluated using the validation
loss, to assess generalization ability, and accuracy measures metrics like precision
and recall to determine its effectiveness in correctly verifying crack patterns. This
evaluation is crucial for ensuring the model’s reliability and practical applicability
in automated structural health monitoring.
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3.3.1 METHODS AND PROCEDURES

The methodology employs a deep learning-based approach to generate and ana-
lyze high-dimensional embeddings of images capturing structural cracks. This pro-
cess facilitates the verification of specific cracks across different points, allowing for
an accurate assessment of their evolution in the future. The core of our technique
utilizes a Siamese network architecture, with ResNet101 serving as the backbone for
feature extraction. This choice is motivated by ResNet101’s proven capability to
capture intricate details within images, which is essential for differentiating between
minor discrepancies in crack appearances [141]. ResNet101 is a deep neural network
architecture with 101 layers, utilizing residual connections to facilitate training deep
models by addressing the vanishing gradient problem, enhancing performance in im-
age classification and feature extraction tasks (Figure. 3.3).

Figure 3.3: Diagram of a Siamese network for crack verification, depicting the triplet dataset input
into three ResNet-101 encoders to produce embeddings, which are then compared to compute
triplet loss.

The process begins with the collection of crack images of the targeted civil struc-
ture at various intervals. These images are then pre-processed to normalize their
size and enhance contrast, ensuring that the input data is consistent and highlight-
ing the features relevant to crack detection. For training the Siamese network, a
triplet loss function has been employed [165]. This involves selecting triplets of im-
ages for each training iteration: an anchor (a reference image of a crack), a positive
(another image of the same crack, possibly at a different time), and a negative (an
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image of a different crack). The network is trained to minimize the distance between
the anchor and the positive images in the embedding space while maximizing the
distance between the anchor and the negative images. This approach ensures that
the network learns to identify the unique characteristics of each crack, making it
possible to track the same crack over time through changes in its appearance.

Once trained, the network can generate embeddings for new images of cracks. By
comparing these embeddings, we can determine whether two images depict the same
crack, even if there have been changes due to the crack’s progression or variations
in imaging conditions (Figure. 3.4). This capability allows for the detection of
subtle changes in crack dimensions in future work that may indicate significant
developments in the structure’s condition.

Figure 3.4: Architecture of ResNet-101, highlighting the input, convolutional layers, residual nodes
with skip connections (Identity), and the final Fully Connected (FC) layer.

The triplet loss function is used in machine learning to measure the relative
similarity between inputs. The goal is to make the distance between the anchor and
the positive smaller than the distance between the anchor and the negative by a
margin. The triplet loss equation is:

L = max(0, d(a, p) − d(a, n) + margin)

where d(a, p) is the distance between the anchor (a) and the positive (p), d(a, n)
is the distance between the anchor and the negative (n), and margin is a threshold
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parameter to ensure the positive is closer to the anchor than the negative is by some
margin. This approach is widely used in tasks like face recognition and similarity
learning, encouraging a model to learn useful embeddings.

3.3.2 IMPLEMENTATION

The implementation of our crack verification methodology follows a structured
workflow consisting of key stages: image preprocessing, dataset creation, network
configuration, and model training. Each phase is carefully designed with specific
hyperparameters and configurations to ensure optimal model performance and gen-
eralization capability.

3.3.3 Image Preprocessing and Dataset

The dataset used in this study is the Surface Crack Detection available on Kag-
gle. This dataset is specifically designed for Crack Detection, providing a valu-
able resource for developing and testing algorithms in this field. The final dataset
used for training the triplet loss-based network was constructed from the pub-
licly available Surface Crack Detection Dataset, which originally contained 40000
images (20000 cracked and 20000 non-cracked), cropped from 458 high-resolution
(4032×3024 px) concrete surface photographs [166, 167]. To build meaningful an-
chor–positive–negative triplets, we selected 20000 such combinations, where each
triplet includes one anchor (crack image), one positive (another image from the
same or similar crack), and one negative (non-crack or dissimilar crack). Since the
original images were reused to form multiple triplets, some crack instances appear in
several combinations under different conditions. While the exact number of unique
cracks is not explicitly tracked, the number of high-resolution sources (458) provides
an upper bound on the number of distinct crack regions represented in the dataset.
For the study, the dataset has been transformed into a triplet set (anchor, positive,
and negative) to fit the requirements of our model - a Siamese network with the
triplet loss (Figure. 3.5). To provide the positive images, we used anchors with
rotation and shearing.

The dataset was divided as follows:

• 12,000 images for training (60%)

• 3,000 images for validation (15%)

• 5,000 images for testing (25%)
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Figure 3.5: Samples of triplet dataset for cracks.

In this study, we utilized this dataset to train our model, validate its performance,
and finally test its ability to generalize to unseen data. The use of a large testing set
is crucial in the context of verification, as it provides a comprehensive assessment
of the model’s generalization capabilities to unseen data. It also aids in mitigating
overfitting by ensuring that the model is evaluated against a significant amount of
data that was not present during the training phase. The results, as discussed in the
following sections, demonstrate the effectiveness of our approach and the potential
of the Crack Dataset as a resource for crack detection research.

3.3.4 Network Configuration

The pre-trained ResNet101 architecture, provided by Keras [168] and trained on
the ImageNet dataset, serves as the basis for our embedding model. This choice
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Figure 3.6: Model Loss in during Training.

leverages the deep residual learning framework to facilitate the extraction of rich
feature representations from images of civil structures. The network’s output is then
passed through additional dense layers and batch normalization layers to refine the
feature embeddings. Specifically, the proposed approch implements a dense layer
with 256 units followed by ReLU activation [169] and batch normalization, and
another dense layer with 128 units, also followed by ReLU activation and batch
normalization, culminating in an output dense layer that produces 128-dimensional
embeddings. The training process was done by utilizing V100 Nvidia GPU [156]
and The validation loss model has reached 1.3e-05 (Figure. 3.6).

3.3.5 Hyperparameters Summary

Parameters such as learning rate, epsilon, and the margin for Triplet Loss are
specified to optimize model performance. Hyperparameters are as follows:

• Target Image Size: 227 * 227 pixels

• Batch Size: 32

• Epochs: 200

• Optimizer: Adam [170]

• Learning Rate: 1e− 4

• Epsilon: 1e− 1

• Margin (for Triplet Loss): 1
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• Dense Layer Configuration: 256 units (ReLU + BatchNorm) followed by 128
units (ReLU + BatchNorm)

3.3.6 EVALUATION

The implementation of the Siamese Network with a ResNet-101 backbone for
the task of image verification yielded significant insights into the model’s ability to
discern between similar and dissimilar images. The analysis of the distances between
anchor-positive and anchor-negative pairs, derived from a test dataset comprising
5,000 image triplets, forms the crux of our evaluation.

3.3.7 Model Evaluation Metrics

To evaluate the performance of the proposed Siamese network model, a set of
metrics has been utilized, each providing insights into different aspects of model
accuracy and robustness [171].

• Precision: Measures how accurately the model identifies cracks, ensuring that
detected cracks are true defects while minimizing false positives.

• Recall: Evaluates the model’s ability to detect all existing cracks, ensuring
that real defects are not overlooked.

• F1 Score: Provides a balanced assessment of detection performance by com-
bining precision and recall, particularly useful for imbalanced datasets.

• Manhattan Distance (D): Manhattan Distance, also known as L1 distance,
measures the distance between two points in a grid-based path (as opposed to
Euclidean distance). It is used to calculate the distance between embeddings
in the Siamese network, reflecting the model’s discriminative power.

D =
n∑

i=1
|xi − yi| ,

where xi and yi are the components of the two points in the embedding space.
Lower Manhattan distances indicate that the embeddings of similar instances
are close to each other.

• Standard Deviation: Measures the variability in the model’s predictions, as-
sessing the consistency of crack detection. A lower standard deviation indicates
a more stable and reliable detection process.
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Figure 3.7: The frequency distribution of distances for both positive and negative pairs.

Figure 3.8: Individual positive and negative distances, highlighting the spread and overlap of
distances. The optimal threshold line shows the distance value that best separates positive from
negative pairs.

3.3.8 Evaluation Model

Statistical analysis revealed that the mean distance for anchor-positive pairs was
significantly lower than that for anchor-negative pairs (Figure. 3.7), illustrating the
model’s efficacy in embedding similar images closer in the feature space. Specifically,
the mean Manhattan Distance for positive pairs was observed at 5.13, with a stan-
dard deviation of 2.01, indicating a tight clustering of similar images. Conversely,
the mean distance for negative pairs stood at 19.89, with a standard deviation of
5.75, reflecting a broader dispersion that is expected given the dissimilarity among
the images. Further examination through the determination of an optimal thresh-
old for classification underscored the model’s precision in distinguishing between the
two categories. An optimal threshold of 10.56 was identified, balancing sensitivity
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Figure 3.9: This shows how the error rate of classification changes as the distance threshold
is adjusted. The optimal threshold is marked, indicating the point at which the error rate is
minimized.

and specificity, and enabling the model to achieve an accuracy of 97.36% (Figure.
3.8, Figure. 3.9). The precision and recall metrics, standing at 95.77% and 99.1%
respectively, along with an F1 score of 97.41%, attest to the model’s robustness
and reliability in performing image verification tasks. The Area Under the Curve
(AUC) for the ROC curve was calculated at 99.61%, highlighting the model’s ex-
cellent discriminatory ability across various threshold settings (Figure. 3.10). The
distribution plots for positive and negative distances further elucidated the model’s
discriminative capacity, showcasing a clear separation between the two classes.

3.4 Conclusions and Future Research

This chapter demonstrated the integration of UAVs and deep learning technolo-
gies, particularly YOLOv8 and Siamese networks, for efficient, scalable, and auto-
mated crack detection. The results highlighted the effectiveness of these systems
in addressing traditional limitations in structural health monitoring, such as labor-
intensive methods and limited precision. Furthermore, the proposed triplet loss-
based approach enables tracking crack evolution over time, laying the groundwork
for predictive maintenance. The integration with digital twins offers significant po-
tential, allowing real-time updates, simulations, and data-driven decision-making,
thereby enhancing infrastructure resilience and safety.

Future research could focus on:

• Enhancing model robustness under adverse environmental conditions.
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Figure 3.10: The Receiver Operating Characteristic (ROC) curve above illustrates the performance
of the Siamese network model across different threshold settings for the image verification task.

• Implementing real-time processing on lightweight UAV platforms.

• Incorporating multi-modal data fusion, such as LiDAR and thermal imaging.

• Optimizing scalability and cost-effectiveness for widespread adoption.

• Expanding the triplet loss-based system for long-term crack progression analy-
sis.

• Seamlessly integrating UAV systems with digital twin and IoT frameworks to
enable synchronized monitoring and predictive insights.

By addressing these areas, UAV-based systems, coupled with digital twins, can
further revolutionize structural health monitoring, ensuring safer and more sustain-
able infrastructure.



Chapter 4

Marker-Based Tracking for
Structural Monitoring

This part builds on two recent IEEE publications that explore advancements
in marker-based tracking systems for structural monitoring, with a focus on 3D-
scaled masonry models. The first paper, presented at the 2024 IEEE International
Workshop on Metrology for Living Environment (MetroLivEnv) [172], introduces a
low-cost tracking system using ArUco markers and a commercial smartphone. By
leveraging a 6-degree-of-freedom reference motorized system, the study demonstrates
that the proposed method achieves an expanded uncertainty of approximately 0.5◦

in orientation measurement, which is acceptable for its intended applications. The
system’s capability was further validated through dynamic testing on a 3D-scaled
masonry arch, successfully tracking 19 targets during the displacement of its support
base.

The second paper, presented at the 2024 XXXIII International Scientific Con-
ference Electronics (ET), advances marker-based tracking through the development
of DeepTag, a novel system utilizing convolutional neural networks (CNNs) for en-
hanced performance [173]. DeepTag improves tracking accuracy by reducing mea-
surement uncertainty and addressing challenges such as occlusions and varying light-
ing conditions. This method requires fewer markers while maintaining robust ac-
curacy, making it a cost-effective and scalable alternative to traditional systems.
Preliminary results underscore its potential for structural monitoring, particularly
in the preservation and maintenance of masonry structures. Together, these works
lay the foundation for the methodologies and systems discussed in this part, high-
lighting the transformative potential of combining low-cost hardware with advanced
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machine-learning techniques for structural health monitoring.

4.1 Challenges and Advancements in Monitoring Masonry
Structures

Masonry structures, particularly historic buildings, are a cornerstone of cultural
and architectural heritage. Constructed with bricks, stones, or concrete blocks
bound by mortar, these structures form intricate and durable assemblies [174].
However, their preservation poses significant challenges due to their inherent vul-
nerabilities to environmental stressors, ground settlements, and seismic activities
[175, 176, 177, 178]. The low tensile strength of masonry often leads to cracks
under changing boundary conditions, exhibiting a unilateral mechanical response
[179]. Such cracks, if untreated, can critically reduce the structural capacity of
these constructions [180, 181, 182, 183, 184], highlighting the importance of effec-
tive monitoring systems for maintaining their integrity.

4.1.1 Key Challenges in Masonry Monitoring

Monitoring masonry structures presents several challenges that must be addressed
to ensure their preservation and structural stability:

• Complex Stress Conditions: Masonry constructions are subject to vari-
ous stressors, including environmental factors, thermal expansion, and ground
movement. These stressors can cause cracking and deformation, which are often
difficult to predict and analyze without detailed data.

• Seismic Vulnerability: Masonry structures, particularly unreinforced ones,
are highly susceptible to horizontal loads generated by seismic events [177, 178].
Understanding their in-plane seismic capacity and failure mechanisms is critical
for designing reinforcement strategies.

• Data Collection Constraints: Traditional methods for gathering data on
masonry behavior, such as manual inspections or high-cost systems like laser
scanners, can be labor-intensive, time-consuming, and financially restrictive.
Additionally, these methods often struggle with accessibility in hard-to-reach
areas of complex structures.

• Accuracy and Scalability: Many low-cost monitoring solutions face chal-
lenges in maintaining accuracy over time, particularly under dynamic condi-
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tions. Furthermore, scaling these systems from small-scale models to real-world
masonry constructions remains an open question in the field.

• Environmental Factors: Variations in lighting, weather conditions, and oc-
clusions pose significant challenges for structural monitoring technologies, es-
pecially those relying on optical or visual markers.

4.1.2 Recent Advances and Proposed Solutions

To overcome these challenges, significant advancements have been made in the
field of masonry monitoring. Low-cost marker-based systems have emerged as a
practical and economical alternative to traditional high-end solutions [95]. These
systems leverage standard video-capturing technologies and low-cost markers, of-
fering reduced setup and operational costs while maintaining critical accuracy. By
enabling the tracking of structural movements in scaled masonry models, such sys-
tems provide a valuable method for assessing the residual stability of deformed
structures under quasi-static boundary conditions [185].

Building upon foundational marker-based systems, modern approaches are now
integrating machine learning techniques to enhance accuracy and adaptability. One
such advancement is DeepTag [186], a deep learning-based system utilizing con-
volutional neural networks (CNNs). DeepTag addresses several limitations of tra-
ditional marker-based systems by improving marker recognition under challenging
conditions, such as varying lighting and occlusions. This innovation reduces depen-
dency on high-contrast markers, allowing for more versatile and robust monitoring
in diverse environments.

Moreover, the scalability of such systems from small-scale models to real masonry
constructions is a key focus of current research. Recent experimental work demon-
strates the feasibility of using marker-based systems in tracking 3D-scaled masonry
models, with an expanded uncertainty kept within acceptable margins [185, 187].
By combining affordability and reliability, these systems present a compelling case
for widespread adoption in large-scale monitoring projects.

The following is a review of the advancements and applications as discussed in
the referenced works:

• Low-Cost Marker-Based Optical Motion Capture: a significant focus
has been developing cost-effective alternatives to high-end commercial systems
for validating inertial measurement units (IMUs). One such development is
a low-cost marker-based optical motion capture system utilizing smartphone
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cameras to track red markers and calculate their coordinates and angles. It
offers an affordable solution without sacrificing significant accuracy [188];

• Pose Estimation with Ball-Shaped Targets: introducing a ball-shaped
target in tracking-based scanning systems represents a pivotal innovation. This
design allows for continuous pose estimation of the target during robot opera-
tions, utilizing a stereo vision system to estimate the 3-D position and orienta-
tion of the moving target in real-time. Such systems are invaluable in robotic
tracking applications where full-space orientation and tracking are required
[189];

• Vision-Based Bending Sensors for Robotics: in the scope of soft robotics,
particularly with PneuNet actuators, vision-based sensors using ArUco marker
detection have been developed. These sensors facilitate the monitoring of bend-
ing movements via a simple camera module. The system allows for the me-
chanical conversion of bending angles to marker rotations, demonstrating how
marker-based systems can be effectively utilized in more dynamic, responsive
robotic applications [190, 191, 192].

• Motion capture systems for 3D displacement measurements of struc-
tures: the tracking of markers’ positions can be used for measuring the dis-
placements of steel structures [193]. These displacement measurements can be
used to identify the static and dynamic characteristics of the structure [193].
For instance, in [193], the Authors proposed a motion capture system for mea-
suring the 3D displacement of a steel-scaled structural model during a free
vibration test through 5 markers and 3 cameras.

• Application in Developmental Research: Marker-based motion tracking
has also found applications in developmental research. Systems capable of
tracking rigid bodies using multiple markers provide insights into object or tool
use, making them especially useful in studies involving infants or small children,
where non-intrusive methods are preferred. This application highlights the
system’s versatility beyond industrial or robotic uses, showcasing its potential
in human-centered studies [194].

Overall, these advancements underscore the diverse applications of marker-based
tracking systems, from cost-effective motion capture solutions to sophisticated robotic
control and developmental research tools. Each development not only enhances the
capabilities of marker-based systems but also broadens the potential fields of ap-
plication, proving the system’s adaptability and scalability in addressing various
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real-world challenges [195, 194].
The novelty of the proposed research activity concerns the adoption of a low-cost
marker-based tracking system using a smartphone camera for the measurements of
the displacements of a 3D-scaled masonry model of an arch during quasi-static tests.
The main difference with [193], where a steel structure was monitored and five mark-
ers were used, is that the displacements of all the blocks composing the model must
be measured in the case of complex masonry models. Thus, the tracking of a higher
number of markers is needed. This need poses a challenge from the metrological
point of view because many markers (in the considered study case 20 markers) must
be identified and precisely tracked during the test.

4.2 Proposed ArUco Marker Tracking Method and Exper-
imental Evaluation

The following subsections detail the proposed marker-based tracking system and
the implemented framework.

4.2.1 Implemented framework

The implemented framework utilizes the OpenCV and NumPy libraries to pro-
cess video data and estimate the positions of markers in real-time. Initially, the
system retrieves camera calibration parameters from a pre-defined YAML file, which
is essential for accurate pose estimation. The camera captures video input directly
through a webcam or from a pre-recorded file, ensuring versatility in testing different
environments. As frames are read from the video source, the system employs the
ArUco marker detection algorithm to identify markers within each frame. A specific
ArUco dictionary is used to configure the detector parameters, optimizing the detec-
tion process for the 6x6_250 dictionary, which is known for its balance of detection
accuracy and computational efficiency. In the literature, different solutions propose
their own specified collection of markers, i.e. a marker dictionary. Unfortunately,
there are two issues with using a predetermined dictionary. Firstly, the number
of markers the application requires may be larger than the dictionary’s capacity.
Secondly, if the number of markers required is modest, utilising a dictionary with
a large inter-marker distance is better to reduce inter-marker confusion. Moreover,
in several cases, the occlusion problem is not properly addressed. ArUco fiducial
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markers are an example of a marker-based system that addresses these challenges
[190].

4.2.2 Marker Configuration and Pose Estimation Process

The experiment has focused on two specific markers to maintain a manageable
complexity and ensure robust data collection. Each marker’s corner is defined rela-
tive to its known physical dimensions, here set as 0.015 m for both sides of a square
marker. During the video processing loop, the system detects these markers in
each frame, and if at least two markers are identified, it proceeds to estimate their
poses. The pose estimation leverages the solvePnP function from OpenCV, which
computes each detected marker’s rotation and translation vectors relative to the
camera’s optical center. This step is critical as it provides the spatial orientation
and position necessary for further analysis.

4.2.3 Data Handling and Output

Upon successful pose estimation, the system dynamically records each marker’s
translation and rotation vector components into CSV files, uniquely named accord-
ing to the marker identifier. This data storage method facilitates subsequent analysis
of marker movements over time. Additionally, the framework draws the detected
markers on the video frames to provide visual feedback on the tracking process,
which is crucial for real-time monitoring and debugging. The video frames, an-
notated with the marker positions and axes, are written to an output video file,
serving as a record of the experiment. The implementation allows for interruption
through user input, ensuring that the system can be conveniently stopped during
live demonstrations or testing.

4.2.4 Metrological characterization

The proposed marker-based tracking system has been tested against a 6-DoF
reference motorized system by Standa LTD [196], which exhibits an accuracy of
the imposed orientation around every axis of 0.01◦. Fig. 4.1 shows the adopted
experimental setup for two acquired frames with orientations at 0◦ (see Figure.
4.1a), and 30◦ (see Figure. 4.1b), respectively. A wooden rod is fixed onto the z-axis
motor and seven ArUco markers are placed along it. A reference marker is placed
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Figure 4.1: Adopted experimental setup for the preliminary metrological characterization of the
marked-based tracking system in measuring the orientation of the markers against a 6-DoF refer-
ence motorized system: (a) captured camera frame when the orientation of the motor is fixed to
0◦, and (b) captured camera frame when the orientation of the motor is fixed to 30◦.

on the motorized system, see the red boxes in Figure. 4.1, and its position is used
for defining the reference coordinate system in a frame.

Figure 4.2: Difference between the reference angles and the obtained mean values, ∆, with the
expanded uncertainty (coverage factor of 2) against the reference orientation measurements.

Once the marker positions are obtained, each couple is processed to estimate the
line crossing them. For every line, the orientation to the line at 0◦ is assessed, thus
obtaining six orientation measurements. Ideally, the six angle measurements should
be equal to each other, however, because of the sources of uncertainty, such as light
conditions, blurring, and lens distortion the obtained values are slightly different.
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The test has been performed for orientation ranging from 2◦ to 40◦ with a step of
2◦. For tracking purposes, the system used a Google Pixel 7 pro camera [197]. The
smartphone camera was placed at a distance of 50 cm from the motorized system.
For every imposed angle, the orientation measurements were filtered with a moving
average having a window size of 30 samples. Then, the expanded uncertainty with
a coverage factor of 2 is estimated on the six lines’ orientation measurements in all
the frames. In Fig. 4.2, the differences between the reference angles imposed with
the motorized system and the obtained mean values from the markers’ tracking, ∆,
are depicted together with the expanded uncertainty. It can be observed that the
absolute difference increases with the reference angle while the expanded uncertainty
is slightly constant at around 0.5◦.

Figure 4.3: Interquartile ranges of the six segment distances that are obtained from the positions
of each pair of successive markers.

Another test has been conducted to assess the repeatability of distance measure-
ments obtained from the positions of each pair of successive markers. With seven
markers along the wooden rod, six segment distance measurements are obtained for
each imposed orientation in every frame. In particular, 20 distance measurements
are considered at an imposed orientation, providing an amount of 20 × 21 measure-
ments, where 21 is the number of imposed orientations. According to the χ2 test,
the obtained measurements are not Gaussian distributed. For this reason, the in-
terquartile range has been considered to assess the measurement repeatability. The
interquartile ranges for the six segments are reported in Fig. 4.3. The 1st segment
exhibits the lowest interquartile range of around 0.15 mm, while the 6th segment
exhibits the highest, i.e., around 1.2 mm. The 1st segment is located at the centre
of the image, while the 6th segment is closer to its edge. Thus, the interquartile
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range increases with the distance from the centre of the image; this can be due to
the lens distortions, which are usually higher at the edges.

Figure 4.4: Arch model and reference block with the corresponding tracked markers.

Figure 4.5: Tracked markers for the first frame (asterisks) and the 1000-th frame (circle).

4.2.5 Test bench for 3D-scaled masonry models

A test was conducted to track the deformed configuration of an arch whose sup-
port was subjected to pseudo-static horizontal displacements. The scaled model of
the arch consists of 15 voussoirs spanning 20 cm with a thickness of 2.0 cm The
depth of the arch is 19 cm. Four further blocks were created to simulate supporting
conditions as depicted in Fig. 4.4. A variable horizontal support displacement was
prescribed at the base of the right support after about 2 s in which the arch was in
static conditions. The position and orientation of each arch’s element were obtained
according to a reference marker, which was in static conditions for the entire test
duration. Fig. 4.5 shows the tracked elements for the first frame and the 1000-th
frame. In the 1000-th frame, due to the horizontal displacement, the arch configu-
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ration is significantly changed with respect to its geometrical configuration in the
first frame where no displacement occurred.

Figure 4.6: Magnitude of the displacements of the 19 masonry blocks.

4.2.6 Preliminary experimental tests

Preliminary tests were conducted to demonstrate the capability of the system
to track the markers during quasi-static tests. The displacement vectors obtained
from the coordinates of every marker at the i-th frame and their coordinates in the
first frame are calculated. A moving average with a time window of 30 samples
is applied to the obtained magnitude and orientation measurements. In Fig. 4.6
and Fig. 4.7, the magnitude and orientation measurements of the displacement
vectors are depicted, respectively. Fig. 4.6 shows as at the beginning for around
2 s, the maximum displacement magnitudes for all elements is around 6 mm. Then,
three different displacements are enforced, with peak magnitudes of around 10 mm,
14 mm, and 20 mm, respectively. The arch elements interested in those displace-
ments are 14-th, and 16-th for the last two.

The arch span measurements obtained by tracking the position of the first marker
and the 19-th marker are shown in Fig. 4.8. The initial arch span was around
280 mm, then it was reduced to around 275 mm at 11.6 s. At 25.7 s and 43.0 s, the
values of 295 mm and 300 mm were obtained, respectively. Of course, the arch span
measurements are overestimated (it was around 200 mm) because the measurements
are based on the center positions of the markers rather than the actual edges of the
structural elements. This results in a discrepancy, as the space between the edges of
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Figure 4.7: Orientation of the displacements of the 19 masonry blocks.

the elements is not directly considered (see Fig. 4.4). Future work will be performed
to compensate for this error by retrieving the position of the markers in the elements.

Figure 4.8: Arch span measurements, i.e., the distance between the 1st and 19th block.

The proposed ArUco-based tracking system includes an uncertainty evaluation
for both orientation and distance measurements. In particular, expanded uncer-
tainty (coverage factor = 2) was computed for the orientation angles, as shown in
Figure 4.2, and interquartile ranges were used to assess the repeatability of dis-
tance estimations between markers (Figure 4.3). These evaluations highlight the
metrological soundness of the developed tracking system.
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4.3 Proposed DeepTag Marker Tracking Method and Ex-
perimental Evaluation

4.3.1 Proposed Marker Tracking Method

The proposed marker tracking method is based on DeepTag [186]. DeepTag en-
hances marker tracking using a sophisticated two-stage detection scheme combined
with deep learning techniques. The process involves detecting keypoints, estimat-
ing Regions of Interest (ROIs), generating rectified patches, decoding marker IDs,
and estimating the 6-Degree-of-Freedom (DoF) pose (see Figure. 4.9). Given an

Figure 4.9: Workflow for 6-DoF Pose Estimation Using DeepTag Detection.

input image, DeepTag detects groups of keypoints, each corresponding to a poten-
tial marker. It estimates each potential marker’s ROI and represents it with at
least four clockwise non-collinear points. A rectified patch is then generated using
a homography matrix that maps the ROI to predefined points in the patch, such
as mapping a four-point ROI to a fixed square. This step normalizes the detected
region for further processing.

In the rectified patch, keypoints and digital symbols are estimated and sorted.
These symbols encode the marker’s information. The marker ID is recognized by
comparing the decoded digital symbols with a predefined marker library [198]. The
keypoint positions in the original image are obtained by applying the inverse ho-
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mography matrix, mapping the points back to their original coordinates. Using the
known physical size of the marker, the 6-DoF pose is estimated using the Perspective-
n-Point (PnP) algorithm. This provides the marker’s position and orientation rela-
tive to the camera.

To address lens distortions, a calibration procedure using a chessboard pattern
estimates five distortion coefficients, accounting for both radial and tangential dis-
tortions. These coefficients are used to compensate for distortions in the marker
pose estimates.

DeepTag’s architecture includes convolutional layers for feature extraction and
fully connected layers for classification and regression tasks. Trained on a large
synthetic dataset with various marker types and distortions, it generalizes well to
real-world scenarios. The training process involves dataset augmentation with ran-
dom noise, blur, and lighting variations to improve robustness.

4.3.2 Preliminary Metrological Characterization

The proposed marker-based tracking system has been evaluated against a 6-DoF
reference motorized system by Standa LTD [196] (Figure. 4.1), which provides an
orientation accuracy of 0.01◦ around each axis. A wooden rod fixed to the z-axis
motor has seven ArUco markers placed along its length. A reference marker is fixed
on the motorized system, defining the reference coordinate system for each frame.

Figure 4.10: Difference between the reference angles and the obtained mean values, denoted as ∆,
along with the expanded uncertainty (with a coverage factor of 2) plotted against the reference
orientation measurements
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The orientation of each line connecting marker pairs is assessed relative to the
line at 0◦, resulting in six orientation measurements. Tests covered orientations
from 2◦ to 40◦ in 2◦ increments. A Google Pixel 7 Pro camera [197] was positioned
50 cm away from the motorized system for tracking. The expanded uncertainty,
with a coverage factor of 2, was estimated for the six lines’ orientation measure-
ments across all frames. Figure. 4.10 shows the differences between the reference
angles and the mean values obtained from marker tracking, as well as the expanded
uncertainty. The maximum expanded uncertainty was 0.29◦, significantly lower than
the 0.58◦ reported in [172]. It is acknowledged that, in some instances, the estimated
error appears to exceed the expanded uncertainty bounds shown in Figures 4.2 and
4.10. This can be attributed to additional sources of variability not fully captured
by the simplified uncertainty model, such as frame synchronization issues, lighting
variations, or imperfections in marker detection. Therefore, the presented expanded
uncertainty should be interpreted as a lower-bound estimate based on dominant
contributors. A more comprehensive model including these secondary effects could
provide more conservative and complete uncertainty estimates in future work.

A separate test evaluated the consistency of distance measurements between suc-
cessive markers. With seven markers on a wooden rod, six segment distances were
measured for each orientation, totaling 420 measurements across 21 orientations (0◦

to 40◦ in 2◦ steps). The interquartile range was used to evaluate repeatability due
to non-Gaussian measurement distributions. As shown in Figure. 4.11, interquartile
ranges increased with distance from the image center, likely due to greater lens dis-
tortion at the edges. However, the maximum interquartile range was 0.12 mm, one
order of magnitude lower than the 1.2 mm reported in [172].

4.3.3 Experimental Test on Scaled Masonry Arch

A preliminary experimental test was conducted, as described in [199], to demon-
strate the system’s capability to track markers during quasi-static tests. The scaled
arch model comprises 15 voussoirs spanning 20 cm with a thickness of 2.0 cm and
a depth of 19 cm. Four blocks simulate supporting conditions. Figure. 4.12 shows
the 3D-scaled arch model and markers tracked by DeepTag.

After 2 seconds of static conditions, variable horizontal displacement was applied
at the base of the right support. The position and orientation of each voussoir were
determined using a static reference marker. Figure. 4.13 illustrates the tracked ele-
ments in 3D for the first and 1000th frames. In the 1000th frame, significant changes
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Figure 4.11: Interquartile ranges of the six-segment distances derived from the positions of each
successive marker pair

Figure 4.12: 3D-scaled model of the arch and the tracked markers by DeepTag

in the arch configuration highlight the system’s ability to capture displacement and
orientation changes over time.

Displacement vectors were calculated by comparing each marker’s coordinates
in the i-th frame to those in the first frame. A moving average with a 30-sample
time window smoothed these measurements. Figures. 4.14 and 4.15 depict the dis-
placement magnitude and orientation, respectively. The maximum displacements
occurred at around 43 s for the 16th and 17th elements, reaching approximately
22 mm.

The arch span, measured between the first and 19th markers, initially measured
277 mm and decreased to 273 mm at 11.6 s. At 25.7 s and 43.0 s, the span increased
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Figure 4.13: Magnitudes of the displacements of the 19 masonry blocks constituting the arch.

Figure 4.14: Magnitudes of the displacements of the 19 masonry blocks constituting the arch

to 290 mm and 296 mm, respectively. These measurements were less noisy than
those in [172], with a 4 mm difference in span values.

4.3.4 Limitations and Future Improvements

Despite improved measurement accuracy, processing time remains a limitation.
Each frame requires approximately seven seconds on an Intel Core i7-4710HQ CPU,
making it impractical for long-term monitoring with many frames. Future work will
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Figure 4.15: Orientations of the displacements of the 19 masonry blocks constituting the arch

focus on optimizing processing time and addressing lens distortion by considering
additional calibration coefficients.

4.4 Comparison of Marker-Based Tracking Methods

This section highlights the advantages and disadvantages of the two marker-based
tracking methods: the DeepTag system and the low-cost marker-based system using
ArUco markers. While both systems are designed for tracking 3D-scaled masonry
models, they differ significantly in terms of accuracy, complexity, and implementa-
tion costs.

4.4.1 Advantages and Disadvantages

DeepTag System:

• Advantages:

– Leverages deep learning techniques, offering high accuracy in marker detec-
tion and pose estimation, even under challenging conditions like occlusions
and varying lighting.

– Reduces dependency on high-contrast markers, enhancing adaptability for
different structural configurations.

– Demonstrates reduced measurement uncertainty by 42%, achieving precise
deformation and displacement tracking.



Marker-Based Tracking for Structural Monitoring 108

• Disadvantages:

– High computational demands, requiring powerful hardware for real-time
processing.

– Longer processing times per frame (approximately 7 seconds), making it
less practical for long-term monitoring.

– Requires extensive training data and model fine-tuning, increasing initial
setup complexity.

Low-Cost ArUco Marker System:

• Advantages:

– Cost-effective, using widely available hardware such as smartphones and
standard video-capturing technologies .

– Simple to implement and integrate into existing systems, making it ideal
for preliminary studies and resource-constrained environments.

– Provides acceptable accuracy for many applications, with an expanded
uncertainty of around 0.5◦.

• Disadvantages:

– More susceptible to environmental factors such as lighting and occlusions,
which can impact accuracy.

– Requires high-contrast markers and careful camera calibration to maintain
reliability.

– Limited scalability for tracking large numbers of markers in complex con-
figurations.

The following table summarizes the key differences between the two methods in
Table 4.1:

Table 4.1: Comparison of DeepTag and Low-Cost ArUco Marker-Based Systems

Feature DeepTag System ArUco Marker System
Accuracy High (42% less uncertainty) Moderate (0.5°uncertainty)
Cost High (requires specialized hardware) Low (uses smartphones and basic hardware)
Robustness to Occlusions High Low
Scalability High (tracks multiple markers) Limited
Ease of Implementation Complex (deep learning setup) Simple
Processing Speed Slower (7s/frame) Faster
Environmental Adaptability High (handles varying conditions) Moderate (requires ideal conditions)
Applications Detailed structural monitoring Preliminary or low-budget monitoring
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The ArUco-based method showed a typical expanded uncertainty of approxi-
mately ±1.2 mm in translation and ±0.48° in rotation under controlled lab con-
ditions. In contrast, the DeepTag-based system achieved an improved expanded
uncertainty of ±0.8 mm in translation and ±0.29° in rotation, mainly due to its
larger marker area and enhanced robustness to image blur and noise. These values
were derived from repeated static pose estimations over 100 frames under similar
lighting and distance conditions.

The choice between the two systems depends on the specific requirements of the
application. DeepTag is ideal for projects demanding high accuracy and robustness
in challenging environments, albeit at the cost of higher computational and financial
resources. On the other hand, the ArUco marker-based system offers a cost-effective
and simpler alternative for less demanding scenarios or preliminary studies.
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Chapter 5

Environmental Monitoring for
Marine Digital Twins

This chapter is based on the research presented in the paper "A Significant Wave
Height Data-Driven Modeling for Digital Twins of Marine Environment" published
in the proceedings of the 2024 IEEE International Workshop on Metrology for the
Sea (MetroSea) [200]. The study focuses on the development of a predictive model-
ing framework designed for forecasting Significant Wave Height (VHM0) in marine
environments, an essential parameter for maritime operations and safety. The chap-
ter integrates the core methodologies discussed in the paper, particularly leveraging
digital twins (DTs) to enhance real-time monitoring and predictive analytics for wave
height dynamics. By utilizing a Gated Recurrent Unit (GRU) neural network, the
model processes in situ sensor data from three key locations—Tarragona, Barcelona,
and the EMSO-OBSEA observatory which is located 4 km of the Vilanova i la Geltru
coast, Barcelona, Spain—enabling a robust approach to wave height forecasting.

5.0.1 Key Observations and Insights

Digital twins (DTs) are digital representations of real-world systems or objects
that are created through a variety of intricate and varied modeling techniques in
order to faithfully mimic their state and behavior [201, 202]. In the context of this
study, the term ’Digital Twin’ refers to a predictive model that simulates wave dy-
namics in marine environments based on real-time data inputs. While proposed
model does not constitute a complete digital twin, it forms a critical component of
such a system by providing accurate wave height predictions. This study focuses
on the preliminary development of a predictive model for wave height, which serves

111
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as an essential component of a future digital twin for marine environments. While
a complete digital twin encompasses multiple aspects of the environment, including
physical, chemical, and biological processes, the current research lays the ground-
work for this broader integration [203]. Real-time data is used to continuously
update these models, and machine learning techniques are applied to refine model
outputs and enable testing of specific hypotheses by varying model parameters.

The creation of a Digital Twin of the Ocean (DTO) is one of the newest uses
of DTs in environmental science. A DTO is a digital depiction of the marine bio-
sphere that is built using a variety of biological, meteorological, oceanographic, and
socioeconomic data. Multiparametric assessments of environmental patterns and
processes, such as ecosystem responses to anthropogenic influences and natural oc-
currences, are made possible by this extensive model [204, 205, 206, 207].

The use of Digital Twins of the Ocean (DTOs) in maritime contexts is yet some-
what unexplored, despite their enormous potential. In order to close this gap, this
section focuses on predictive modeling with a DT model created especially for mar-
itime environments. This research attempts to improve the monitoring, analysis,
and decision-making processes in maritime operations by utilizing the advanced ca-
pabilities of DTs, ultimately leading to safer and more effective results. The OBSEA
underwater observatory and buoys have collected data to create a 3D representation
of the sea’s current condition as a digital twin [208, 209, 210] (see Figure. 5.1).

Figure 5.1: The underwater observatory and buoy OBSEA have collected data to create a 3D
representation of the sea’s current condition as the digital twin [211].



Environmental Monitoring for Marine Digital Twins 113

5.0.2 Related Work

Predictive modeling in the maritime domain have advanced through machine
learning and deep learning techniques, enhancing operational efficiency and safety
[212, 213]. Despite these advancements, existing methodologies have limitations
that the proposed approach aims to address.

In the field of wave prediction, recent studies have explored the use of advanced
deep learning techniques, particularly recurrent neural networks (RNNs) [214] such
as Long Short-Term Memory (LSTM) [215] and Gated Recurrent Unit (GRU) mod-
els [216]. These models have shown promising results in forecasting significant wave
height (SWH) and other wave parameters [217].

Hu et al. compared LSTM networks with the numerical model WAVEWATCH
III for predicting wave parameters, demonstrating the effectiveness of LSTM in cap-
turing temporal dependencies in wave data. Building on this work, recent research
has investigated the potential of GRU models, which are similar to LSTMs but with
a simpler architecture [218].

A study by Minuzzi and Farina presented a new deep learning training framework
for forecasting significant wave height in the Southwestern Atlantic Ocean using
LSTM networks [219]. The approach showcased the ability of LSTM models to
capture complex temporal patterns in wave data.

Further advancing the field, researchers have explored the use of both unidirec-
tional and bidirectional GRU models for wave forecasting. A study focusing on
significant wave height prediction utilized these GRU variants, highlighting the po-
tential of bidirectional architectures in capturing both past and future context in
time series data [220].

More recent work has compared the performance of multivariate GRU and LSTM
models for hindcasting and multi-step forecasting of significant wave height. These
models have demonstrated the ability to handle multiple input variables and provide
accurate predictions over various time horizons [221, 217].

The application of these advanced RNN architectures, including both LSTM and
GRU, represents a significant step forward in wave prediction. Their ability to
capture long-term dependencies and handle complex temporal patterns makes them
particularly well-suited for the challenges of wave forecasting, potentially offering
improvements over traditional statistical and numerical models [222].
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Figure 5.2: Predictive model architecture with three GRU layers (50 units each), dropout layers
(0.2), and a dense output layer. Input data shape: [16, 5].

5.0.3 Methodology

The methodology employed in this study involves several key steps to develop
a robust predictive model for maritime environmental data. The process begins
with comprehensive data preprocessing, where raw data is cleaned, formatted, and
normalized to ensure consistency and reliability for the subsequent modeling phases.

Once the data is preprocessed, it is divided into training, validation, and testing
sets. The training set is utilized to train a machine learning model designed to
forecast future values of the target variable based on input features derived from
the maritime dataset. The validation set is used to fine-tune the model parame-
ters, helping to prevent overfitting and ensure the model generalizes well to new
data [216]. The testing set, which is kept separate from the training and valida-
tion sets, is used to evaluate the model’s performance on unseen data, providing an
unbiased assessment of its predictive capabilities.

For the predictive modeling task, a GRU neural network is selected due to its
efficacy in capturing temporal dependencies in sequential data. The model was
developed using the TensorFlow and Keras libraries in Python, which provide robust
support for deep learning and efficient computation. The use of these frameworks
enabled streamlined data processing and model optimization. The GRU model is
trained to recognize patterns and relationships within the data, enabling it to make
accurate predictions about future values of the target variable. The architecture of



Environmental Monitoring for Marine Digital Twins 115

the model, as shown in Figure.5.2 consists of three GRU layers followed by a dense
output layer, designed to capture temporal dependencies and provide precise wave
height forecasts.

Outlier assessment is integrated into the methodology by analyzing the residuals,
which are the differences between the predicted values and the actual observed
values. An outlier, in the context of this study, is defined as a data point or a set of
data points that deviate significantly from expected normal behavior. Specifically,
for maritime environmental data, outliers can be characterized by unusually high or
low values of key features such as Significant Wave Height which can practically be
utilized in anomaly detection. These deviations could indicate abnormal maritime
conditions, sensor malfunctions, or other irregular events that differ from typical
patterns in the dataset.

Outliers are identified when these residuals exceed a predefined threshold, indicat-
ing significant deviations from the expected behavior. This threshold is established
based on the statistical distribution of the residuals, ensuring that the outlier as-
sessment mechanism is sensitive enough to detect unusual patterns while minimizing
the occurrence of false positives.

The performance of the predictive model is assessed using standard regression
metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), and
Root Mean Squared Error (RMSE). Additionally, the Pearson correlation coefficient
is calculated to evaluate the strength and direction of the linear relationship between
the predicted and actual values.

Implementation and Metrics

5.0.4 Dataset

The dataset utilized in this study consists of maritime environmental data col-
lected from various sensors around the Tarragona region in Spain [223]. Key features
crucial for understanding wave dynamics include Significant Wave Height (VHM0),
Mean Wave Direction (VMDR), Peak Wave Period (VTPK), Zero Crossing Period
(VTZA), and Maximum Wave Height (VZMX). VHM0, the primary target variable
for our predictive model, represents the average height of the highest one-third of
waves observed. VMDR indicates the average direction from which the waves are
coming, VTPK represents the period of the most energetic waves, VTZA denotes
the average period between zero crossings of the wave signal, and VZMX records the
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height of the highest wave observed during the measurement period. These features
were meticulously selected to capture the temporal and spatial dynamics essential
for accurate predictive modeling. The data was rigorously preprocessed to eliminate
invalid entries and ensure consistency, including removing non-numeric values and
negative values that could skew the analysis.

The datasets used in this study were provided by two different sources: Puertos
del Estado and the EMSO OBSEA observatory. The primary dataset, used for
training the model, was collected from sensors in the Tarragona region by Puertos
del Estado, the Spanish government body responsible for managing ports and marine
infrastructure. This dataset includes data from numerous oceanographic sensors
installed on buoys that monitor and record various maritime parameters, including
significant wave height, mean wave direction, and peak wave period.

For model evaluation, two additional datasets were employed. The first evalua-
tion dataset was collected from a buoy in the Barcelona region, also maintained by
Puertos del Estado [224]. The second evaluation dataset came from the Expandable
Seafloor Observatory (EMSO OBSEA) [225, 226], situated off the Spanish coast at
Vilanova i la Geltrú. This dataset was gathered using an Acoustic Doppler Current
Profiler (ADCP) equipped with AWAC-AST 1 MHz technology [227] at a depth of
20 meters. These diverse sources ensured a comprehensive evaluation of the model’s
robustness and generalizability across different maritime environments.

The dataset utilized in this study consists of maritime environmental data col-
lected from various sensors around the Tarragona region in Spain [223]. This dataset
includes several key features crucial for understanding wave dynamics:

• Significant Wave Height (VHM0): This feature is the primary target vari-
able for our predictive model, representing the average height of the highest
one-third of waves observed.

• Mean Wave Direction (VMDR): Indicates the average direction from which
the waves are coming.

• Peak Wave Period (VTPK): Represents the period of the most energetic
waves.

• Zero Crossing Period (VTZA): Denotes the average period between zero
crossings of the wave signal.

• Maximum Wave Height (VZMX): Records the height of the highest wave
observed during the measurement period.
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These features are meticulously selected to capture the temporal and spatial
dynamics essential for accurate predictive modeling. The data is rigorously pre-
processed to eliminate invalid entries and ensure consistency, including removing
non-numeric values and negative values that could skew the analysis.

5.0.5 Implementation

The implementation process begins with comprehensive data preprocessing. The
’time’ column is then converted to date time format, and any entries with invalid
date time data are discarded. The relevant features, including the target variable
VHM0, are selected and cleaned to ensure all values are numeric and non-negative.

The selected features and the target variable VHM0 are normalized to scale the
data within a range of 0 to 1. This normalization ensures that all features contribute
equally to the model training process.

The normalized data is transformed into sequences with a specified look-back
period of 16, which defines how many past data points are used to predict the next
point. This sequence creation is critical for time-series forecasting using GRU, as
it allows the model to learn temporal dependencies effectively [228]. The dataset is
divided into three subsets: 70% for training, 20% for validation, and 10% for testing.
A GRU-based neural network is then constructed with specific hyperparameters.
The first and second GRU layers each contain 50 units, both configured to return
sequences to facilitate stacking, while the third GRU layer contains 25 units, also
returning sequences. A dropout rate of 0.2 is applied after each GRU layer to prevent
overfitting [229]. The model is trained with a batch size of 32 over 100 epochs,
using early stopping to monitor validation loss and optimize training duration. The
model is compiled with the Adam optimizer and a mean squared error (MSE) loss
function [230]. Early stopping is employed with a patience of 10 epochs, ensuring
that training halts when the validation loss no longer improves.

5.0.6 Metrics

The model’s performance is quantitatively assessed using several key metrics:

• Mean Absolute Error (MAE):

MAE = 1
n

n∑
i=1

|yi − ŷi|
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where n is the number of data points, yi represents the actual value, and ŷi

represents the predicted value. This measures the average magnitude of errors
in the predictions without considering their direction [231].

• Mean Squared Error (MSE):

MSE = 1
n

n∑
i=1

(yi − ŷi)2

where n is the number of data points, yi represents the actual value, and ŷi

represents the predicted value. This provides a measure of the average squared
difference between the actual and predicted values, giving more weight to larger
errors.

• Root Mean Squared Error (RMSE):

RMSE =
√√√√ 1
n

n∑
i=1

(yi − ŷi)2

where n is the number of data points, yi represents the actual value, and ŷi rep-
resents the predicted value. This offers a measure of the average magnitude of
the errors in the same units as the target variable, making it more interpretable
[232].

• Pearson Correlation Coefficient:

r =
∑n

i=1(yi − ȳ)(ŷi − ¯̂y)√∑n
i=1(yi − ȳ)2 ∑n

i=1(ŷi − ¯̂y)2

where n is the number of data points, yi represents the actual value, ŷi rep-
resents the predicted value, ȳ is the mean of the actual values, and ¯̂y is the
mean of the predicted values. This measures the linear correlation between the
actual and predicted values, ranging from -1 to 1. A higher value indicates a
stronger positive linear relationship [233].

Outliers are detected based on the residuals, which are the differences between
the actual and predicted VHM0 values. The residuals are analyzed, and a threshold
is set for identifying outliers. This threshold is calculated as:

Threshold = MPR + 2 × SDPR

while MPR is Mean of positive residuals and SDPR is Standard deviation of positive
residuals.
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Residuals exceeding this threshold are flagged as outliers. The proportion of
outliers is calculated as the ratio of outliers to the total number of predictions.

Results and Discussion

This study presents a comprehensive analysis of predictive modeling in maritime
environments using three distinct datasets: the Tarragona dataset, the Barcelona
dataset [224], and the EMSO-OBSEA dataset from the OBSEA Expandable Seafloor
Observatory [226]. Each dataset brings unique challenges and insights into the
maritime conditions observed.

5.0.7 Results

Tarragona Dataset

The Tarragona dataset, which is the primary dataset used for training the model,
demonstrates excellent model performance. The Mean Absolute Error (MAE) is
approximately 0.0955 m, and the Mean Squared Error (MSE) is 0.0431m. The
Root Mean Squared Error (RMSE) is 0.208 m, indicating small deviations between
predicted and actual wave heights. The Pearson Correlation Coefficient is 0.9354,
reflecting a strong positive correlation and high model fidelity. The Precision-like
Metric reaches 99.07%, suggesting that the model’s predictions closely align with the
actual data. The proportion of outliers detected is low at 0.24%, with only 1.64% of
actual values falling outside the predicted intervals. Despite gaps extending up to
103 days, the model’s high correlation coefficient indicates robust performance and
resilience to missing data. (Figures 5.3,5.4,and 5.5).

Figure 5.3: Distribution of residuals for the Tarragona dataset.
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Figure 5.4: Comparison of actual and predicted VHM0 (m) with flagged anomalies (Tarragona
dataset).

Figure 5.5: Comparison of Actual and Predicted VHM0 (m) with 95% Prediction Intervals (Tar-
ragona dataset).

Barcelona Dataset

The model also performs well on the Barcelona dataset, with an MAE of 0.0903
m and an MSE of 0.0330 m. The RMSE is 0.182 m, indicating slightly better per-
formance compared to the Tarragona dataset. The Pearson Correlation Coefficient
of 0.9517 indicates a very strong correlation between predicted and actual values.
However, the model identifies a higher proportion of outliers at 2.04%, with 4.58%
of actual values lying outside the prediction intervals. These figures suggest slightly
more complex wave patterns in this dataset. The maximum gap duration is 9 days,
and the strong correlation coefficient reflects the model’s robustness in handling data
gaps (Figure 5.6, Figure 5.7 and Figure 5.8).
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Figure 5.6: Distribution of residuals for the Barcelona dataset.

Figure 5.7: Comparison of Actual and Predicted VHM0 (m) with 95% Prediction Intervals
(Barcelona dataset).

Figure 5.8: Comparison of Actual and Predicted VHM0 (m) with flagged outliers (Barcelona
dataset).

EMSO-OBSEA Dataset

The EMSO-OBSEA dataset shows the model’s adaptability to different data
sources with an MAE of 0.1290m and an MSE of 0.0633 m. The RMSE is higher at



Environmental Monitoring for Marine Digital Twins 122

0.252 m, reflecting greater variability in wave height measurements. The Pearson
Correlation Coefficient is 0.8857, indicating a strong correlation but slightly lower
than those obtained with the Tarragona and Barcelona datasets. This dataset has
a higher proportion of outliers at 4.11% and a higher percentage of actual values
outside the prediction intervals at 7.77%. The increased outlier rates and larger
prediction errors may be attributed to periods of storm data recorded by the OBSEA
sensors (Figure. 5.9, Figure. 5.10 and Figure. 5.11). Despite gaps up to 280 days,
the model maintains a strong correlation, demonstrating its robustness in dealing
with extensive missing data.

Figure 5.9: Distribution of residuals for the EMSO-OBSEA dataset.

Figure 5.10: Comparison of Actual and Predicted VHM0 (m) with 95% Prediction Intervals
(EMSO-OBSEA dataset).
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Figure 5.11: Comparison of Actual and Predicted VHM0 (m) with flagged outliers (EMSO-OBSEA
dataset).

5.0.8 Discussion

The visual analysis across all datasets demonstrates the model’s effectiveness in
tracking and predicting significant wave heights within acceptable error margins as
supported by similar findings in [234]. While each dataset presents its own set of
challenges, the model consistently achieves high accuracy and correlation metrics,
proving its utility in maritime environmental monitoring.

Model Performance

The model’s performance on the Tarragona and Barcelona datasets highlights its
robustness and high accuracy. The strong Pearson Correlation Coefficients and low
error metrics indicate that the model effectively learns and generalizes the patterns
in these datasets. The slightly higher outlier rates in the Barcelona dataset may
reflect more complex wave patterns.

Adaptability to Diverse Data Sources

The performance on the EMSO-OBSEA dataset, while slightly lower, still shows
strong predictive capability. The higher error metrics and outlier rates suggest
that the model, trained primarily on port data, faces challenges when applied to
open ocean sensor data from the OBSEA observatory. This result underscores the
importance of considering the source and nature of training data when deploying
predictive models in diverse environmental conditions.
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Robustness to Data Gaps

A notable observation is the model’s resilience to data gaps. The model maintains
high Pearson Correlation Coefficients throughout, despite the presence of significant
gaps in all datasets. This consistency contrasts with other methods, which often see a
decline in performance when faced with incomplete data. Traditional models, such as
linear regression or even some machine learning approaches, can struggle to maintain
accuracy in the presence of data gaps, leading to reduced correlation and predictive
power [235]. The ability of the proposed model to maintain strong correlations
despite these gaps highlights its robustness and reliability, making it particularly
well-suited for real-world maritime monitoring scenarios where data incompleteness
is common. This robustness could be considered a significant advancement over
other methods, which may not perform as well under similar conditions [236, 237].

Outlier assessment

outlier assessment is a crucial aspect of maritime monitoring. The low proportion
of outliers in the Tarragona dataset indicates stable wave conditions. In contrast,
the higher outlier rates in the EMSO-OBSEA dataset highlight the variability and
significant wave events captured by the OBSEA sensors, which are critical for mar-
itime operations and safety.

5.0.9 Limitations and Challenges in Outlier Assessment as an Anomaly
Detection Approach

Adopting a statistical approach based on residual analysis like outlier assessments
can be practical for anomaly detection, particularly when labeled anomalies are not
available [238]. This method operates under the assumption that most data points
are normal and that outliers are rare, which is often a reasonable presumption in
real-world scenarios. The approach can generalize well across different datasets
by setting thresholds based on residual statistics, such as the mean and standard
deviation. This generalizability was demonstrated by the consistent performance
across multiple datasets in the study. Furthermore, statistical methods are relatively
simple to implement and interpret, providing clear criteria for outlier assessments.

However, there are limitations to this approach. The effectiveness of residual
analysis heavily relies on the model’s predictive accuracy. Significant prediction er-
rors can result in residuals that do not accurately represent outliers. Additionally,
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the choice of threshold is critical; setting it too low may result in many false positives
while setting it too high might miss genuine outliers. Without ground truth labels,
it is challenging to quantitatively validate the model’s outlier assessment capability,
as the evaluation metrics primarily assess prediction accuracy rather than outlier
assessment performance [239, 240]. A statistical approach based on residual analysis
is practical for anomaly detection, especially when labeled anomalies are unavail-
able [238]. This method assumes most data points are normal and outliers are rare,
a reasonable presumption in many real-world cases. By setting thresholds based
on residual statistics, it generalizes well across datasets, as shown by the study’s
consistent performance. Additionally, it is simple to implement and interpret. How-
ever, this approach depends on the model’s predictive accuracy. Large errors can
misidentify outliers, and the choice of threshold is crucial-too low results in false
positives, while too high may miss genuine outliers. Without ground truth labels,
validating outlier detection remains challenging [239, 240].

5.0.10 Advancements Over Existing Methodologies

The GRU model demonstrated high predictive accuracy across all datasets, as
evidenced by Pearson correlation coefficients above 0.88. The model’s resilience
to data gaps, maintaining strong performance despite missing data, highlights its
robustness for real-world applications. This robustness is particularly crucial for
maritime monitoring, where data collection can be sporadic due to harsh conditions.

The proposed data-driven approach to predictive modeling in maritime environ-
ments offers significant improvements over traditional methods. LSTM networks,
though effective, are computationally intensive and complex [218]. GRU models
provide a simpler yet effective alternative, reducing computational load and enhanc-
ing interpretability. The streamlined GRU architecture handles multivariate inputs
and long-term dependencies, improving robustness and accuracy [219].

Unidirectional GRUs maintain computational efficiency, suitable for real-time ap-
plications [220]. Validation across datasets from Tarragona, Barcelona, and EMSO
OBSEA demonstrates consistent performance, highlighting the model’s generaliz-
ability and robustness, even with data gaps.

These advancements highlight the methodology’s potential to enhance predic-
tive modeling and outliers analysis in maritime environments, offering a more effi-
cient, interpretable, and robust solution. Future research should focus on validating
anomaly detection using labeled datasets to ensure robustness and accuracy.
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5.1 Conclusion

This study presented a framework for predictive modeling in maritime environ-
ments using digital twins (DTs). A Gated Recurrent Unit (GRU) neural network
was employed to train and validate the model on datasets from in-situ wave height
sensors in Tarragona, Barcelona, and the EMSO-OBSEA observatory. Rigorous
data preprocessing, including normalization and sequence creation, ensured robust
model performance. The model exhibited high predictive accuracy and resilience,
maintaining strong predictive capabilities despite data gaps, as indicated by Pearson
correlation coefficients. outliers were effectively detected through residual analysis,
enhancing maritime monitoring and decision-making. Overall, this research high-
lighted the potential of DTs in improving maritime operations’ accuracy and effi-
ciency. The findings provide a foundation for further advancements in environmental
monitoring and predictive analytics. Future research could explore integrating ad-
ditional data sources, such as satellite observations and real-time weather forecasts,
to enhance model input and predictive accuracy. Developing real-time deployment
strategies for predictive models within DT ecosystems, optimized for edge devices or
cloud platforms, would improve maritime decision-making processes, environmental
monitoring, operational efficiency, and safety.



Chapter 6

Conclusion and Future Directions

This dissertation has investigated the integration of measurement technologies,
sensor data processing, and machine learning in the development of digital twins for
structural monitoring, UAV/UUV-based inspections, and environmental modeling.
By addressing key challenges in uncertainty quantification, deep-learning-driven de-
fect detection, and sensor fusion, the proposed methodologies have contributed to
advancing the accuracy, efficiency, and automation of digital twin applications.

The research focused on four core areas: (1) visual localization through monoc-
ular visual odometry (VO) and sensor fusion, (2) UAV-based monitoring and crack
detection, (3) marker-based tracking for structural health assessment, and (4) ma-
rine digital twins for predictive modeling of significant wave height. Each of these
components was systematically evaluated to assess their strengths and limitations,
leading to technical insights that inform future research directions.

6.1 Summary of Key Contributions and Findings

6.1.1 UAV-Based Structural Monitoring and Crack Detection

This work developed and validated a deep learning-based crack detection frame-
work leveraging YOLOv8 segmentation models and triplet loss-based learning. UAVs
were deployed to collect high-resolution imagery of concrete structures, and the pro-
posed methods demonstrated significant improvements over traditional manual in-
spection techniques. The results showed that the YOLO-based segmentation model
achieved an average precision of 87%, while the triplet loss model for crack verifica-
tion attained an accuracy of 97.36%.

However, several factors affected the robustness of the model. Lighting variations,
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camera angles, and resolution constraints influenced detection accuracy, requiring
further improvements in data augmentation and domain adaptation. The findings
emphasize the need for multi-modal sensor integration to compensate for the limi-
tations of purely vision-based approaches.

6.1.2 Marker-Based Tracking for Structural Health Monitoring

A novel marker-based tracking system was introduced to monitor masonry models
with improved precision and cost efficiency. The DeepTag method demonstrated a
42% reduction in measurement uncertainty compared to traditional ArUco markers,
with an expanded uncertainty of 0.29° in orientation measurement.

While the approach provided a low-cost and scalable alternative to high-end mo-
tion capture systems, its effectiveness was limited by occlusion, marker degradation,
and placement constraints. The study highlights the need for dynamic marker de-
tection models, which can adapt to occlusions and environmental conditions using
machine learning-based feature extraction.

6.1.3 Visual Localization and Odometry in GNSS-Denied Environments

This dissertation also investigated monocular VO and VIO techniques for UAV/UUV
navigation in GNSS-denied environments. A measurement uncertainty model was
formulated to assess the accuracy of localization estimates, demonstrating how fea-
ture extraction methods affect disparity uncertainty. The evaluation showed that
ORB and Harris feature detectors outperformed SURF and FAST in terms of sta-
bility and robustness.

Simulation results revealed that position drift accumulation could reach over 5
meters within 20 estimates, necessitating the integration of depth sensors and IMU
data to mitigate long-term errors. The findings underscore the importance of hybrid
localization strategies that combine image-based motion estimation with auxiliary
sensor data to improve reliability in real-world applications.

6.1.4 Marine Digital Twin for Environmental Modeling

This work extended digital twin applications to marine environments, developing
a GRU-based predictive model for significant wave height forecasting. The model
achieved a Pearson correlation of 0.9354, demonstrating strong predictive perfor-
mance. Furthermore, an outlier assessment method was introduced, improving the
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detection of anomalous wave conditions.
However, the model showed limitations in capturing extreme wave events, pri-

marily due to its reliance on historical data without incorporating real-time physical
constraints. Future improvements should focus on physics-informed neural networks
(PINNs) to integrate domain-specific knowledge into the forecasting model.

While the proposed approaches provided advancements in measurement accuracy,
defect detection, and localization, several challenges remain:

1. UAV-based crack detection was effective, but environmental variability reduced
robustness. High contrast lighting, sensor noise, and motion blur impacted
detection precision, requiring adaptive models capable of real-time adjustments.

2. Marker-based tracking provided cost-effective monitoring but was sensitive to
occlusions. The proposed DeepTag markers outperformed conventional meth-
ods, but further work is required to optimize marker placement strategies for
large-scale monitoring.

3. Monocular VO uncertainty models highlighted the limitations of purely vision-
based localization. Sensor drift accumulation exceeded acceptable thresholds,
requiring IMU fusion and deep-learning-based feature extraction to improve
robustness.

4. The marine predictive model was accurate but struggled with extreme condi-
tions. The model’s reliance on historical data without real-time sensor feedback
limited adaptability.

6.2 Future Work and Technical Advancements

Based on the findings, several key directions emerge for future research:
Improving UAV-Based Crack Detection Under Variable Conditions Future work

should explore multi-modal defect detection by integrating LiDAR and infrared sen-
sors with traditional RGB imaging. Self-supervised learning and domain adaptation
techniques should be employed to ensure models remain effective under varying en-
vironmental conditions.

Real-time processing should be enhanced using edge AI models deployed directly
on UAVs, reducing dependency on cloud computing and enabling on-the-fly defect
classification.
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6.2.1 Advancing Marker-Based Tracking with AI-Assisted Detection

The sensitivity of marker-based tracking to occlusions could be addressed by
developing machine-learning-enhanced marker detection systems. These systems
could predict marker locations under partial occlusion, using feature-based tracking
models to infer hidden marker positions.

Additionally, integrating adaptive placement algorithms for marker distribution
could optimize spatial coverage, ensuring maximum visibility in complex structures.
In real infrastructure monitoring, strategically placing markers in areas of high struc-
tural stress or known defect-prone regions would enhance tracking accuracy and
long-term assessment reliability.

6.2.2 Hybrid Visual-Inertial Localization for Digital Twin Integration

To address the scale ambiguity and drift limitations of monocular VO, future
research should focus on hybrid sensor fusion strategies. Combining deep-learning-
based feature matching with IMU data and LiDAR depth estimation could signifi-
cantly enhance localization accuracy.

The application of graph-based SLAM (Simultaneous Localization and Mapping)
techniques could also provide improved long-term consistency in digital twin mod-
els. Integrating an uncertainty model for SLAM would enable the quantification of
localization errors at each node in the graph, enhancing robustness in dynamic and
unstructured environments.

6.2.3 Enhancing Marine Digital Twins with Physics-Informed Models

Future research should integrate real-time buoy and satellite data into the marine
digital twin framework, refining predictions using physics-informed deep learning
models. Such models would enable more accurate forecasting of extreme wave events
by combining data-driven learning with physical oceanographic principles.

Furthermore, outlier detection models should be enhanced using deep anomaly
detection networks rather than statistical thresholds, improving detection reliability
in complex ocean conditions.
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6.3 Final Remarks

This dissertation has demonstrated how measurement technologies, UAV/UUV-
based inspections, and deep learning models contribute to enhanced digital twin ap-
plications. The results highlight the potential of integrating sensor-based monitoring
with AI-driven analysis, providing new opportunities for real-time decision-making,
predictive maintenance, and automated structural assessments.

However, the research also identifies key challenges in sensor fusion, environ-
mental variability, and data reliability that must be addressed in future work. By
refining localization methods, improving adaptive detection models, and integrat-
ing physics-based constraints into predictive analytics, digital twins can evolve into
more robust and reliable systems.

This work lays the foundation for further advancements in intelligent digital twin
systems, offering new insights into how sensor information processing, uncertainty
modeling, and AI-driven analytics can revolutionize the way physical structures are
monitored and maintained. As technology progresses, the integration of real-time
data acquisition, high-fidelity simulations, and self-adaptive AI models will further
bridge the gap between physical and digital environments, unlocking new dimensions
in predictive intelligence and automated decision-making.
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