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EN: And whoever fears Allah, He will make for him a way
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Allah, He will suffice him. Certainly Allah fulfills His
purpose, and He has determined for everything a measure.
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Abstract

Agriculture faces growing challenges from climate change and population pressures, mak-
ing the efficient use of resources essential for ensuring global food security. Precision
Agriculture (PA), known as precision farming, emerges as a critical response to these
challenges. This advanced agricultural approach utilizes digital technologies to monitor
and optimize farming processes, aiming to improve both the quantity and quality of crop
production while enhancing resource use efficiency and promoting plant health through
data-driven decision-making.

At the core of PA are cutting-edge technologies such as advanced sensors, Unmanned
Aerial Vehicle (UAV)s, satellite monitoring systems, and positioning technologies like
Global Navigation Satellite System (GNSS). These tools generate high-resolution, site-
specific data on key factors such as soil health, crop growth, moisture levels, and en-
vironmental conditions. Sensors deployed on ground-based platforms, UAVs, or satel-
lite systems offer real-time, large-scale field monitoring, facilitated by advanced image
processing techniques, Machine Learning (ML), Artificial Intelligence (AI), and other
methodologies. These technologies and methodolgies enable the early detection of crop
stress, diseases, and nutrient deficiencies. By integrating these approaches, PA sup-
ports the targeted application of water, fertilizers, and pesticides, optimizing resource
utilization while enhancing crop yield and promoting sustainable agricultural practices.

Measurement forms the foundation of PA, transforming traditional farming into a
highly data-intensive, efficient, and sustainable practice. However, the effectiveness of
these measurements depends on their accuracy and reliability, which can be affected by
measurement uncertainty. Measurement uncertainty refers to the degree of doubt or
variability associated with a measured value, encompassing potential errors, biases, or
inaccuracies introduced during data collection, processing, or interpretation. In PA, un-
certainty can arise from various sources, including equipment limitations, environmental
variability, or challenges in integrating diverse data sources. As measurement technol-
ogy continues to advance through sensor innovation, data analytics, and automation,
addressing and managing uncertainty remains critical to driving the future of agricul-
ture. This thesis aims to enhance the reliability of measurement systems in PA across
three key technologies: UAV imagery for NDVI measurement, ML for plant disease de-
tection, and IoT-based tree health monitoring. It includes developing an uncertainty
quantification and radiometric compensation framework for NDVI measurements, using
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an ML-based identification model for plant disease and assessing its robustness under
image variability caused by various uncertainty sources, and designing an IoT-based sys-
tem for continuous environmental and tree monitoring. Together, these contributions
support more accurate, stable, and data-driven decision-making in agricultural practices.
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Chapter 1

Introduction and Motivation

As the global population continues to rise, projected to reach approximately 9.7 billion
by 2050, the demand for food and fiber is escalating at an unprecedented rate. Tradi-
tional agricultural practices are increasingly insufficient to meet this demand sustainably,
prompting a need for innovative solutions that enhance productivity while conserving
resources. Modern agricultural production relies heavily on monitoring crop status by ob-
serving and measuring various factors, including soil conditions, plant health, the impact
of fertilizers and pesticides, irrigation efficiency, and crop yield. Managing these elements
presents significant challenges for crop producers, necessitating rapid advancements in
monitoring agricultural growth and health assessment to ensure efficient resource use
and effective crop yield management [14].

PA has emerged as a cutting-edge approach adopted worldwide, characterized as an
advanced innovation and optimized field-level management strategy aimed at enhanc-
ing resource productivity in agricultural fields. Implementing PA technologies enables
farmers to better understand local soil types, enhance soil quality, make informed crop
choices, and manage critical agricultural tasks such as irrigation scheduling, planting and
harvesting times, and pest and disease control [15, 16]. These technologies also assist
in nutrient application and yield prediction. By minimizing wasteful actions and pro-
viding timely management information, PA optimizes the use of water, chemicals, and
energy, thereby reducing the sector’s vulnerability to climate change, including droughts,
extreme weather events, and climate-related pests and diseases [15, 17].

The technologies underpinning PA are continually evolving, integrating Remote Sens-
ing (RS), Internet of Things (IoT), big data analysis, AI, and ML to optimize and syn-
thesize information for informed management decisions. PA applies these technologies
to provide, process, and analyze multisource data with high spatial and temporal resolu-
tion [2, 18, 19, 20]. Remote sensors used in PA can operate at various distances from the
crops being observed, ranging from close-proximity ground-based systems to more dis-
tant spaceborne sensors, such as satellites, each with its advantages and disadvantages.
While ground-based RSs provide critical data on crop health, soil moisture, and nutrient
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levels—facilitating optimized irrigation, pest management practices, and more—they are
often hindered by high initial setup costs and infrastructure requirements, which can be
prohibitively expensive for small-scale farmers [18]. Additionally, ongoing maintenance
and calibration demand substantial resources and specialized expertise, limiting their
accessibility. The complexity of data management may also require advanced analytical
skills or reliance on external assistance, making it less feasible for some producers. Fur-
thermore, ground-based sensors typically have restricted coverage areas, rendering them
less effective for large-scale agriculture compared to aerial or satellite remote sensing
technologies. Environmental factors, such as soil composition and weather conditions,
can further affect their accuracy, potentially compromising data reliability.

In contrast, satellite RS is well-suited for large-scale studies but often falls short of
meeting the spatial resolution requirements necessary for many PA applications [19]. As
an alternative, UAVs have emerged as invaluable aerial platforms widely used in PA
to acquire detailed environmental data. Operating near crops without causing distur-
bance, UAVs can capture high-resolution imagery that is less affected by cloud cover
and atmospheric conditions compared to satellite-based observations. Equipped with
advanced sensors—including RGB, multispectral, hyperspectral, and thermal cameras,
as well as LIDAR—UAVs enable comprehensive assessments of vegetation health and
soil characteristics, providing critical insights for PA. These sensors facilitate critical
measurements for tasks such as irrigation management, pesticide application, fertilizer
optimization, and yield prediction. By detecting and analyzing the electromagnetic en-
ergy reflected, emitted, or backscattered from soil, crops, and vegetation across specific
spectral bands and frequencies, numerous Vegetation Indices (VIs) have been proposed
in the literature to assess plant health and soil conditions. These indices include the
NDVI, measures plant greenness and biomass by comparing Near-InFrared (NIR) and
Red (R) light reflectance, Normalized Difference Moisture Index (NDMI), assesses veg-
etation water content using NIR and Short-Wave Infrared (SWIR) reflectance, Crop
Water Stress Index (CWSI), estimates plant water stress by analyzing canopy tempera-
ture relative to air temperature, Enhanced Vegetation Index (EVI), improves sensitivity
over high biomass areas and reduces atmospheric influences, compared to NDVI, Soil
Adjusted Vegetation Index (SAVI), similar to NDVI but adjusts for soil brightness in
areas with sparse vegetation, Photochemical Reflectance Index (PRI), reflects changes in
photosynthetic efficiency and light-use efficiency of plants, Normalized Difference Water
Index (NDWI), detects water content in vegetation and soil by using NIR and green
wavelengths), Green Normalized Difference Vegetation Index (GNDVI) (a variant of
NDVTI using green instead of R light, more sensitive to chlorophyll content), Triangular
Vegetation Index (TVI) (estimates chlorophyll content and biomass based on a triangu-
lar area defined by R, green, and NIR reflectance, Leaf Area Index (LAI), represents the
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FIGURE 1.1: An integrated overview of this thesis within the context of PA is visually pre-
sented in this figure. It highlights the fundamental components of the research, including the
use of UAVs for capturing multispectral images from the field, the application of NDVI for
evaluating the crop health, and using the methodologies for assessing the effect of uncertainty
sources on the NDVI measurement, using ML, and the integration of IoT technologies in PA.

total leaf area per unit ground area - indicating canopy density and productivity, among
others. [21, 2, 22, 23, 24, 25].

This thesis explores the complexities of PA and its associated technologies, focusing
on the critical issue of measurement using sensors deployed in ground-based IoT sys-
tems and UAVs. IoT systems, which integrate networks of sensors, actuators, and data
communication technologies, are fundamental to real-time monitoring and control in
PA, and their contribution to accurately measuring and considering the effects of uncer-
tainty sources in their measurement and data reliability warrants further analysis [26].
For UAV platforms, a workflow is developed to quantify the effect of uncertainty sources
on NDVI measurements by creating a radiometric compensation method, offering valu-
able insights to enhance the reliability and effectiveness of PA practices. By addressing
these challenges, the thesis aims to contribute to sustainable agricultural solutions in
the face of global challenges. Fig. 1.1 provides an integrated overview of the concepts
explored in this thesis within the context of PA. It includes the use of multispectral
images captured by UAVs for NDVI measurement, along with the evaluation of uncer-
tainty sources affecting this VI. It also covers the use of ML models for identifying wheat
diseases, as well as the application of IoT technologies for monitoring the health status
of trees.
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1.1 Role of Measurement in PA

Measurement is important in many areas of science, technology, industry, and everyday
life. It is used to describe and compare things accurately, whether they are physical,
chemical, biological, or abstract. Scientists use measurement to test ideas, collect data,
and confirm results, especially in fields like physics, climate science, and engineering,
where accuracy matters a lot. In industries such as healthcare, environmental monitor-
ing, and manufacturing, measurement helps ensure quality, safety, and that rules are
followed. It’s also useful in economics and business for making good decisions, analyzing
finances, and understanding markets. By using common standards, measurement helps
people around the world work together and make progress [27, 28].

Measurement traditionally aims to provide precise, objective data on physical quan-
tities, independent of interpretation. However, due to the complexities of real-world in-
teractions, measurements often yield approximate values rather than exact ones. These
values are estimates of the true quantity, determined under ideal conditions by flawless
systems. Measurement uncertainty reflects the degree of incomplete knowledge regard-
ing the true value of the measurand. It arises from two main sources: (1) the conditions
of the measurement process, including external influences on the system, and (2) the
accuracy of the measuring system, encompassing both precision and trueness. Accord-
ing to the International Vocabulary of Metrology (VIM), measurement uncertainty is a
non-negative parameter that quantifies the dispersion of values that could reasonably be
attributed to the measurand [29]. It reflects the degree of doubt about the measurement
result, based on the available information, and accounts for factors such as limitations
in the measurement process, instruments, and environmental conditions.

In PA, measurement is essential for data-driven decision-making to optimize agricul-
tural practices. PA focuses on managing crop production inputs (e.g., water, nutrients,
pesticides) site-specifically to maximize yield, minimize waste, and reduce environmental
impact. Here are some examples of how measurement contributes to PA.

The measurement of soil and crop health is a central component of PA. Soil
sampling and analysis, which includes the measurement of parameters such as pH, nutri-
ent levels, moisture content, and organic matter, allows for the evaluation of soil fertility
and health. This data forms the basis for site-specific recommendations regarding fer-
tilizers and soil amendments, thus optimizing crop growth and minimizing unnecessary
resource application. Moreover, crop health can be assessed using remote sensing tech-
nologies, such as multispectral and hyperspectral sensors, which enable the measurement
of indicators like chlorophyll content, nutrient deficiencies, and plant stress. These tech-
nologies allow for the early detection of crop issues, facilitating timely interventions and
reducing input waste [30].
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In precision irrigation, accurate measurement of soil moisture using sensors is
essential for maintaining optimal water application strategies. The sensors provide real-
time data on the volumetric water content of soil, enabling precise control of irrigation
timing and quantity. This minimizes both over-irrigation and under-irrigation, thereby
conserving water resources while maintaining adequate moisture levels to support plant
growth. Over-irrigation not only results in water waste but also promotes surface runoff
and deep percolation, which can lead to the leaching of essential nutrients such as ni-
trogen and potassium from the root zone. This nutrient loss not only reduces fertilizer
use efficiency but also poses environmental risks through contamination of groundwater
and nearby water bodies. To enhance decision-making, precision irrigation systems often
integrate meteorological data, such as precipitation, evapotranspiration rates, tempera-
ture, and relative humidity, from localized weather stations. These data inputs allow for
dynamic adjustment of irrigation schedules in response to current and forecasted climatic
conditions, improving water-use efficiency and optimizing crop yield outcomes [31, 32].

Yield monitoring and forecasting play an important role in maximizing crop
output and resource efficiency. Through yield mapping, which combines GPS data and
yield monitors integrated into harvesting equipment, farmers can assess the variation in
crop performance across fields. This spatial variability enables the identification of low-
and high-productivity zones, facilitating targeted interventions such as selective fertil-
ization and pest management. Moreover, predictive models that incorporate historical
yield data along with real-time measurements offer valuable insights for forecasting fu-
ture yields. These models help farmers anticipate crop performance, optimize inputs,
and reduce waste [33].

In pest and disease management, measurement technologies enable the early de-
tection and localized treatment of pest populations and disease outbreaks. For example,
pest populations can be monitored using traps, and remote sensing technologies can
detect changes in the environment indicative of pest infestations. Similarly, sensors that
measure parameters such as leaf temperature or moisture content provide early indica-
tors of disease-prone conditions. These measurements allow for the targeted application
of pest control agents and disease treatments, reducing pesticide use and mitigating
environmental impacts [34].

Precision fertilization relies heavily on accurate measurements of soil and plant
nutrient levels. Tools such as handheld devices and UAVs measure plant nutrient up-
take, particularly nitrogen, ensuring that fertilizers are applied only where necessary.
This targeted approach reduces excess fertilizer use, preventing nutrient runoff and en-
vironmental contamination. Furthermore, Variable Rate Technology (VRT) combines
field measurements with applicator systems to adjust fertilizer application rates in real-
time. This system ensures that each part of the field receives the appropriate amount
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of fertilizer, promoting both efficient resource use and sustainable agricultural prac-
tices [35, 36].

Environmental sustainability in PA is further supported by the measurement
of greenhouse gas emissions emissions—such as CO2, Methane (CH4), and Nitrous
Oxide (N20)—as well as nutrient and contaminant fluxes across soil, water, and air
systems. These measurements capture key processes including soil-atmosphere carbon
exchange, plant uptake, nutrient mineralization and leaching, and runoff of phosphorus,
base cations, and heavy metals [37]. By combining real-time data from in-situ sensors,
remote sensing, and environmental models, precision agriculture enables targeted agro-
nomic interventions that reduce emissions, prevent nutrient loss, and protect surrounding
ecosystems, thus supporting a transition toward more sustainable and resource-efficient
farming systems [37].

Economic optimization in PA is driven by measurement-based decision-making
tools. By quantifying input costs (e.g., water, fertilizer, and seed) and relating them to
yield outcomes, farmers can assess the cost-effectiveness of different agricultural prac-
tices. This enables more efficient use of resources and increases profitability. For in-
stance, data on input efficiency and crop performance can be used to optimize the
allocation of resources, ensuring that inputs are applied where they are most needed to
maximize yield while minimizing costs [36].

1.2 Open Issues

From a methodological perspective, significant ambiguity persists regarding the efficacy
of measurement in accurately representing the true value of measured quantities in PA,
as measurements are conducted under uncontrolled environmental conditions. Assess-
ing the uncertainties associated with various influencing factors remains a critical and
unresolved issue [4, 38]. These include atmospheric and lighting conditions, flight pa-
rameters such as altitude and image overlap, environmental variables like temperature
and humidity, sensor tilt, camera limitations (such as image resolution), object radiation
emissivity, and other factors. To enhance the accuracy and reliability of measurements, it
is crucial to thoroughly understand and effectively mitigate these uncertainties. Achiev-
ing this will require advanced methodologies and technologies to quantify and correct
these influencing factors, thereby improving the precision and validity of agricultural
measurements.

IoT technologies hold significant potential for PA, their implementation faces several
challenges. The limitations of each sensor in measurement such as limited accuracy, sen-
sitivity to environmental conditions, and noise interference. Synchronization of devices
for accurate and energy-efficient operation is complicated by their low computational
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power. Power efficiency is critical, as many devices rely on batteries or solar energy.
The large volumes of data generated by IoT devices, combined with limited bandwidth,
necessitate edge computing for local processing. As deployments scale, issues such as
interoperability, network congestion, and firmware updates emerge. Additionally, high
initial costs, lack of standardization, and environmental durability requirements pose
barriers to widespread adoption [39, 40, 41].

1.3 General Challenges

PA encounters several measurement-related challenges that are critical to its successful
implementation and overall effectiveness. Below are some of these key challenges:

1. Accuracy, Reliability, and Precision of Measurement: Accuracy refers to
how close a measured or estimated value is to the true value. Reliability refers
to the ability of a measurement system to produce consistent and repeatable re-
sults under consistent conditions over time, and precision is the degree to which
repeated measurements under the same conditions yield the same result [42]. In
PA, ensuring reliable and consistent data is challenging due to environmental vari-
ability, sensor limitations, and the complex nature of agricultural systems. Factors
like soil, moisture, and crop differences can affect sensor readings, while low-cost
sensors may suffer from performance degradation and calibration issues. These
challenges can result in inaccurate assessments and suboptimal management deci-
sions, ultimately reducing the effectiveness of PA.

2. Traceability of Measurement: Metrological traceability is the property of a
measurement result whereby the result can be related to a reference through a
documented, unbroken chain of calibrations, each contributing to the measure-
ment uncertainty. This means that every step in the chain must be recorded and
verifiable (documented), there must be a continuous link to a recognized stan-
dard—typically national or international (unbroken chain), each link in the chain
must involve a calibration process, and every calibration contributes to the total
uncertainty associated with the final measurement [43]. Traceability is a challenge
in PA due to the complexity and diversity of data sources, lack of standardization,
and the difficulty of maintaining consistent calibration across sensors and devices.
Data from GNSS, sensors, UAV, and machinery often come with varying accuracy
and undocumented uncertainties, making it hard to establish a clear, traceable link
to recognized standards. Sensor drift, human error, and incompatible systems fur-
ther complicate reliable measurement. Additionally, the cost and effort required to
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maintain traceable calibration processes can be prohibitive, especially for smaller
farms.

3. Calibration and Compensation: In VIM 2.39 [44], calibration is defined as a
two-step process conducted under specified conditions. The first step involves es-
tablishing a relationship between the quantity values, along with their associated
measurement uncertainties, provided by measurement standards and the corre-
sponding indications, which also have associated uncertainties. In the second step,
this established relationship is then used to derive a measurement result from an
indication. On the other hand, in metrology, compensation refers to the applica-
tion of a correction to a measurement result or system to mitigate the influence
of known systematic effects or environmental factors that are not part of the mea-
surand but can affect its accurate determination. This concept, as outlined in the
VIM [45], is intrinsically linked to a correction, which is a compensation for an
estimated systematic effect, and to influence quantities, such as temperature or
pressure, which affect the measurement without being the object of measurement
themselves.

For example, the compensation model described in [46] corrects uneven seed spac-
ing that occurs when multi-row planters follow curved paths. As the planter turns,
positioning errors can cause inconsistent seed placement, leading to uneven growth
and reduced yields. The compensation model uses GNSS and Inertial Measurement
Unit (IMU) sensors to adjust the real-time position and speed of each seeding unit,
predicting the next optimal seeding position to maintain uniform spacing despite
changes in direction, thereby improving crop growth and yield.

Therefore, in PA, correction methods are generally applied as compensation to
mitigate the effects of uncertainty sources during operation, without altering the
fundamental calibration of the measuring instruments.

4. Mastering Documentation: Proper documentation is vital for measurement
traceability in PA. This includes detailed records of calibrations, methods used,
standards referenced, and quantified uncertainties. However, the extensive data
generated by modern PA technologies can make thorough documentation challeng-
ing. Effective data management systems are required to ensure that all relevant
information is captured, stored, and easily retrievable. This level of documenta-
tion is essential for verifying the traceability of measurements and ensuring their
reliability [47, 48].

5. Ensuring Competence: The competence of personnel involved in data collection
and analysis is essential for maintaining measurement traceability in PA. Farmers
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and agricultural technicians must receive adequate training to properly operate
measurement instruments and consider the significance of calibration and doc-
umentation. Achieving this level of competence across the agricultural sector,
which encompasses a wide range of diverse and dispersed stakeholders, presents a
substantial challenge [49]. To address this, targeted training programs and certifi-
cation processes are necessary to develop and sustain this expertise effectively.

6. Standardizing: Standardizing measurement protocols and ensuring the calibra-
tion of sensors and instruments across different environments and systems are es-
sential for data comparability and accuracy. Without standardized measurements,
it becomes difficult to compare data over time or across different locations, po-
tentially leading to incorrect conclusions and suboptimal farming decisions [50].
Promoters of PA are pushing for standardization to solve the problem of systems
not working well together. By creating common rules, they aim to make it eas-
ier for farmers to use data and digital tools, no matter what brand of equipment
they have. This helps farmers adopt new technologies without needing to replace
everything they already use [51].

7. Integration of Data: PA relies on integrating data from multiple sources, includ-
ing sensors, satellite imagery, UAVs, and farm machinery. For example, weather
stations installed on the farm track temperature, humidity, and rainfall patterns;
satellite data helps monitor VIs like NDVI for crop vigor assessment; UAVs can
be equipped with thermal cameras to identify irrigation issues; and harvesters
collect yield data in real-time as they operate in the field. Ensuring compatibil-
ity, synchronization, and reliability of these data streams—each potentially using
different formats and time intervals—poses challenges in measurement and data
management [52].

8. Data Interpretation and Decision Support: Collecting data is only the first
step; interpreting the data and converting it into actionable insights requires ad-
vanced analytics and decision support systems. For example, when soil moisture
levels are excessively high, soil sensors may reach their maximum measurable value,
making it difficult to determine whether flooding has occurred. In such cases,
aerial imagery captured by UAVs can provide a more accurate assessment. Ad-
ditionally, plant moisture content and the extent of foliage development can be
monitored through both ground-based observations and aerial imagery. A more
precise evaluation and interpretation are achieved by integrating data from both
sources. Integrating complex datasets into user-friendly interfaces for farmers and
agronomists is crucial for effective decision-making [53].
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Overcoming these challenges requires integrating diverse data sources, maintaining
instrument calibration, accurately quantifying uncertainties, thoroughly documenting,
ensuring personnel competence, and implementing robust quality management systems.
Addressing these issues will enhance the effectiveness of PA, leading to better resource
management, higher crop yields, and sustainable farming practices.

1.3.1 Open Challenges Discussed in This Thesis

The research presented in this thesis is structured around three technological domains:
multispectral imaging using UAV-mounted sensors, loT-based systems, and the appli-
cation of ML techniques in agricultural contexts. Specifically, the work focuses on mea-
surement systems involving sensors deployed on both UAV and ground-based platforms.
It incorporates metrological principles to evaluate measurement accuracy and investi-
gates uncertainty by analyzing results and, in some cases, identifying and addressing
sources of uncertainty. It is important to note that the factors contributing to uncer-
tainty vary across different platforms. Fig. 1.2 illustrates the open challenges addressed
in this thesis.
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FIGURE 1.2: The open challenges in PA that are addressed in this research.

1. Open Challenges in the Use of Multispectral Cameras on UAVs:

e Sensor Features and Accuracy: Characterizing sensor features involves
complex procedures that may not consistently yield reliable results across dif-
ferent UAV platforms and operating conditions [54, 4]. The characterization
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process aims to quantify the spectral performance of a camera, focusing on
the accuracy of the acquired radiation values per wavelength and the camera’s
SNR. However, when dealing with different sensors, this task is not straight-
forward, as each sample is measured according to a local reference system,
which is heavily influenced by the specific characteristics and design of the
sensor [54].

e Atmospheric and Radiometric Variability: Variations in lighting and
atmospheric conditions, such as changes in humidity and temperature, can
significantly affect the multispectral data. These factors can reduce the pre-
cision of VIs like NDVI, which are highly sensitive to light scattering and
absorption. While radiometric compensation models can mitigate these ef-
fects, their effectiveness can be compromised by fluctuating environmental
conditions [55].

Research Objective: This thesis aims to develop a comprehensive workflow to
quantify the impact of various uncertainty sources on multispectral imagery by
proposing an effective radiometric compensation model to improve the accuracy of
NDVI measurements. This approach will address key challenges, including sensor
specification and the effects of atmospheric variability, Fig. 1.2(1).

2. Open Challenges in Al:

e Data Interpretation and Decision Support: Al algorithms rely heavily
on large datasets. However, agricultural datasets can be sparse, unbalanced,
or noisy, making it difficult to train robust models. Moreover, Al models
often struggle with interpreting complex, heterogeneous data, which can lead
to incorrect predictions or missed insights [56].

e Model Robustness: Another challenge lies in the generalization of Al mod-
els that are robust concerning environmental noise. A model that performs
well in one region or crop type may not transfer effectively to others due to
variations in environmental conditions, soil types, and farming practices [56].

Research Objective: This thesis aims to explore the application of ML algo-
rithms for identifying plant diseases using sufficiently small datasets, in contrast
to the large datasets typically used in Al, and to conduct sensitivity assessments
to evaluate model robustness against uncertainties (Fig. 1.2(2)).

3. Open Challenges in IoT-Based Systems:
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e Sensor Network Deployment: While IoT-based systems hold great promise
for continuous monitoring, the deployment of a dense network of sensors in
agricultural fields faces challenges related to power consumption, wireless
communication, and network reliability, especially in remote or expansive
environments [57, 58, 59].

e Measurement Accuracy and Sensor Uncertainty: Accurate and reli-
able sensor measurements are crucial for informed decision-making in PA.
However, each type of sensor (e.g., temperature, humidity, soil moisture) ex-
hibits inherent uncertainties due to factors like sensor drift, environmental
interference, and manufacturing variability. Quantifying these uncertainties
is essential to ensure the validity of sensor data and improve the overall ro-
bustness of IoT-based monitoring systems [26]. According to the manufac-
turer, the sensor functions within a defined measurement range and provides
a specified accuracy, which indicates the potential deviation from the true
value. Understanding both the sensor’s operating range and its uncertainty
is essential for accurately interpreting the measured data.

e Data Management and Integration: Managing and integrating data from
various IoT devices (e.g., soil moisture sensors, weather stations, irrigation
controllers) is often cumbersome. Ensuring the interoperability of devices
from different manufacturers and handling the large volume of real-time data
is a key challenge in IoT-based PA systems [57, 58].

e Long-Term Sustainability: The sustainability of IoT systems in agricul-
ture, especially in terms of energy consumption and maintenance of sensors
over long periods, remains an open challenge. Efficient power management
and renewable energy solutions are necessary for the continuous operation of
these systems [57, 58].

Research Objective: This thesis aims to design and implement an IoT-based sys-
tem for continuous tree health monitoring, addressing challenges related to specify-
ing sensor uncertainty range, energy efficiency, network deployment, and real-time
data integration, Fig. 1.2(3).

1.4 Aims of the Thesis

The primary objectives of this thesis are to quantify the effects of various sources of
uncertainty on NDVI measurements and propose a radiometric compensation model
for multispectral imagery. This model is then applied to NDVI evaluation to assess
its effectiveness in mitigating light and atmospheric variations. Furthermore, the thesis
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explores the use of ML algorithms for identifying the plant disease, conducts a sensitivity
assessment of the model in the presence of uncertainty sources, and develops an IoT-
based system for continuous monitoring of plant health within PA applications. An
integrated view of all measurement topics addressed in this thesis is described in three
main chapters as follows:

1. Develop and Evaluate a Comprehensive Workflow for NDVI Measure-
ments by Considering the Effect of Uncertainty Sources Using Multi-
spectral Images Captured by UAVs: This chapter introduces a systematic
and comprehensive workflow for modeling and evaluating the effect of uncertain-
ties in NDVI measurement derived from multispectral cameras mounted on UAVs.
The workflow begins with the modeling of the camera sensor’s nominal wavelength,
which is identified as a primary source of uncertainty. Initial uncertainty quantifi-
cation and sensitivity analysis are performed following GUM, law of uncertainty
propagation, Type A and B guidelines. The result shows that the estimated un-
certainty values range from 0.03 to 0.09 for both dry and fresh vegetation. To
more closely reflect real conditions, the model is extended to include the camera’s
Optical Density (OD) within its nominal wavelength and limited spectral band-
width. The results indicate that variation in the camera’s nominal wavelength
contributes significantly to the overall uncertainty, with values reaching up to 0.1.
This degree of uncertainty introduces considerable overlap in NDVI values for dry
and fresh leaves, making accurate differentiation between vegetation states based
solely on NDVI measurements unreliable.

The workflow is further expanded to incorporate additional contributing factors
in NDVI measurement, including leaf reflectance, solar irradiance, atmospheric
conditions, and the camera’s Signal-to-Noise Ratio (SNR). Monte Carlo Simu-
lation (MCS) is employed to assess the individual and combined impacts of the
variation of factors as uncertainty sources, on NDVI accuracy. The results indi-
cate no overlap between the NDVI values of dry and fresh leaves, suggesting that
a threshold can be established to distinguish between the two leaf states under
varying atmospheric conditions. However, this threshold is sensitive to changes
in environmental factors and must be adjusted accordingly. Then, the proposed
workflow is finalized with the integration of a radiometric compensation step. A
key contribution of this study is the development of a radiometric compensation
method by using the DJI white paper [1]. This method emulated reflectance panels
constructed from Permaflect sheets with reflectance values ranging from 5% to 94%
(this approach enables the development of an effective radiometric compensation
method across diverse lighting and surface scenarios), and validating the model use-
ing a real reference panel under field conditions. The proposed method is applied
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to the multispectral images captured by UAV from healthy pistachio canopies, and
the resulting NDVTI values are validated against ground-truth data and compared
to results obtained via the conventional Agisoft Metashape compensation method.
Findings demonstrate that the proposed radiometric compensation approach sig-
nificantly reduces the influence of atmospheric variability, thereby enhancing the
precision and consistency of NDVI assessments.

The paper is organized as follows: Section 2 reviews related work, presenting re-
cent studies and techniques for radiometric compensation. Section 3 introduces
the proposed radiometric compensation method. Section 4 describes the exper-
imental setup, including the study area and data collection process, focusing on
pistachio crops near their harvesting time. Section 5 presents the segmentation
and data analysis of the NDVI measurements, detailing the methodology used for
evaluating pistachio leaf area and processing NDVI measurement by DJI Mavic 3.
Section 6 validates the development of the radiometric compensation method by
comparing the reflectance values of in-field reference targets captured by the UAV.
The proposed method is then applied to UAV imagery to compute NDVI values,
which are compared with those obtained using the conventional radiometric com-
pensation approach in Agisoft Metashape. Additionally, the results are compared
against ground truth data collected in the field. Finally, Section 7 summarizes the
findings and offers recommendations.

Looking ahead, future research should aim to incorporate additional sources of
uncertainty, such as UAV flight parameters (e.g., altitude and image overlap), en-
vironmental variables (e.g., temperature and humidity), and sensor orientation.
Furthermore, it is recommended to evaluate the compensation method on both
healthy and stressed vegetation, across multiple crop species, to assess its broader
applicability. Extending validation across a wider range of atmospheric conditions
will also be essential for improving the robustness and generalizability of the ap-
proach. Finally, applying the workflow to additional VIs could further expand its
relevance in PA.

2. Develop a Workflow for Detecting Yellow Rust Disease for Winter Wheat
Using RGB Images Captured by UAVs: This chapter focuses on creating a
workflow for detecting yellow rust disease for winter wheat through the analysis of
RGB images captured by UAVs. This includes employing image processing tools
to extract critical features, utilizing one-way ANalysis Of Variance (ANOVA) to
prioritize these features, and applying ML algorithms for disease classification.
Additionally, the aim is to perform a sensitivity analysis of the ML model to assess
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its robustness against uncertainties such as blurring, lighting conditions, and noise,
thereby improving the precision of disease detection in vegetation.

The findings demonstrate that the LDA algorithm achieved the highest classifi-
cation accuracy (85.0 %) among the tested ML models for six yellow rust classes,
making it the preferred approach. While its accuracy is lower than that of UAV-
based hyperspectral imaging for binary classification (up to 96 % [60]), the use of
an RGB camera offers a more cost-effective solution. The sensitivity analysis of
the LDA model shows it is resistant to speckle noise but sensitive to contrast noise.
Future work will focus on applying a radiometric compensation method to address
lighting variations. Additionally, segmentation can be automated using ML or DL
techniques to enhance efficiency and reduce manual effort.

3. Design and Implement an IoT-Based System for Monitoring Health
Tree: This chapter presents an IoT-based system for monitoring the health state
of trees, incorporating a range of sensors and electronic components to enable
real-time data acquisition and analysis. The proposed system establishes an effi-
cient communication infrastructure between sensor-integrated nodes and a central
gateway using LoRa technology. In addition, a comprehensive examination of the
selected sensors is provided, including the sensors’ operational principles, func-
tionalities, and integration within the overall IoT framework. Furthermore, the
sensors’ performance and energy consumption are experimentally evaluated under
controlled conditions at the LESIM laboratory.

Future activities could focus on improving field deployment by enhancing energy
efficiency through smart power management and integrating renewable energy.
The use of UAVs, satellite imagery, and ML algorithms will enable large-scale tree
health monitoring and early detection of stress or disease.
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Chapter 2

Use of UAV for PA: Evaluating
Uncertainty of NDVI
Measurement

The UAV sensors, such as RGB, multispectral, hyperspectral, and thermal cameras, are
commonly utilized for measuring vegetation and soil quantities in the case of vegetation
health and soil texture monitoring, like irrigation, pesticide, fertilizer management, and
yield estimation. These sensors, as measurement instruments, are sensitive to the ob-
jects’ reflected, emitted, or backscattered electromagnetic energy in specific frequencies
and spectral bands [61]. In the literature, several VIs based on the reflected electro-
magnetic energy were proposed [62]. These indices, such as NDVI, NDMI, and CWSI,
aim to provide measurement information related to the health state of the vegetation.
These indices are extracted from computer vision and image processing algorithms that
manipulate color and hyperspectral data, combining information from RGB, NIR, Far
Infrared, and other cameras to enhance relevant features while mitigating environmen-
tal disturbances [63, 64]. The utilization of VIs allows researchers to effectively detect,
quantify, and identify anomalies in crops [65], vegetation phenology, and plant attributes
associated with nitrogen levels [66], chlorophyll content [67], and plant phenotyping [65].
This capability facilitates the monitoring of crop health parameters, soil nutrient con-
tent, water availability, temperature distribution, indirect photosynthetic activity, and
responding to various stressors [18, 55, 68, 69].

The NDVI is a widely recognized and extensively employed vegetation metric derived
from the NIR to R reflectance [70, 71]. This index has long held a prominent position
as the standard methodology in RS for the comprehensive assessment of plant health,
LAI, biomass quantification, plant productivity, and fractional vegetation cover in the
agricultural industry [69, 72, 73].

The quality of UAV imagery data is subject to various influencing factors, including
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sensor characteristics, camera noise, topographic variations, lighting geometry, and me-
teorological conditions [74, 75]. Consequently, the pixel values in the captured images
at different wavelengths do not accurately reflect the surface reflectance, due to their
susceptibility to these influence factors [74, 75]. To facilitate quantitative analysis in RS
applications, radiometric compensation of multispectral images is essential [76, 75, 77].
This process involves converting pixel values into units of scene reflectance to account for
atmospheric and solar conditions, ensuring accuracy in quantitative RS. Radiometric
compensation for images acquired by UAV platforms is inherently challenging due to
variations in imaging conditions for each capture. Therefore, an established and system-
atic procedure is imperative to conduct comprehensive radiometric compensation and
generate multispectral images with reflectance [78, 79, 80].

From a methodological perspective, there remains ambiguity regarding the efficacy
of measurement indices, such as NDVI, in accurately representing the actual value of
the measured quantity in PA. Evaluating the uncertainties tied to these measurement
indices remains a persistent challenge. A range of factors contribute to these uncertain-
ties, including atmospheric and lighting conditions, flight parameters such as altitude
and image overlap, environmental variables like temperature and humidity, sensor tilt,
limitations of the camera sensor (such as image resolution), object emissivity, and ad-
ditional influencing elements. All these factors can substantially affect the accuracy of
the measurement results. A comprehensive understanding and effective mitigation of
these sources of uncertainty are imperative for enhancing the accuracy and reliability
of measurements in the context of PA [2, 4]. Currently, there are no models available
in the literature that can assess the uncertainty of NDVI measurements. This absence
stems from the complexity of controlling various factors, such as atmospheric conditions
and camera settings, in experiments.

The structure of this section is as follows: Subsection 2.1 reviews relevant literature,
providing an overview of prior research on UAV and NDVI measurement, including the
sources of uncertainty and methods used for evaluation in the field. Subsection 2.2 dis-
cusses UAV-based measurement systems for PA, emphasizing the critical role of UAVs
in obtaining accurate data in agricultural monitoring. Subsection 2.3 examines com-
pensation methods for environmental effects, focusing on strategies used to account for
factors such as lighting, atmospheric conditions, and other environmental variables that
can affect the multispectral imaging. Subsection 2.4 describes the figures of merit used
in PA, outlining key metrics for assessing the quality, precision, and reliability of NDVI
measurements in agricultural applications. Subsection 2.5 addresses measurement un-
certainty assessment, providing foundational concepts and frameworks that guide the
methodologies presented in subsequent subsections.

Subsection 2.6 presents the first methodology, which involves a preliminary evaluation
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of NDVT uncertainty using law of uncertainty propagation (Type A and B) evaluation
according to the GUM. A detailed analysis of the measurement uncertainty associated
with NDVI is presented. Initially, a model that considers the wavelength variability of
the multispectral camera as an uncertainty source is proposed [2]. Then, this model is
refined in Subsection 2.7 to incorporate the bandwidth limitations of the camera sensor
and variability in OD within its nominal wavelengths, specifically in the R and NIR
bands. Such variability introduces uncertainty into NDVI measurements. The refined
uncertainty model is applied to datasets of dry and fresh Douglas fir leaves.

Subsequently, in Subsection 2.8, a workflow is presented to assess NDVI uncertainty
by focusing on the impact of atmospheric conditions on solar irradiation and vegetation
reflection as captured by a multispectral UAV camera. This analysis explores the effects
of atmospheric conditions in three scenarios: dry-clear, humid-hazy, and a combination of
both. Additionally, it considers variations in solar irradiance and the SNR of the camera.
However, the NDVI measurement process is a complex procedure that involves several
non-linear operations. MCS are used for assessing a sensitivity analysis to evaluate
the influence of these uncertainty sources individually and in combination. The results
highlight that the primary contributors to NDVI uncertainty are atmospheric conditions,
camera wavelength tolerance, and the variability of NDVI values under different leaf
conditions (dry and fresh).

Moreover, in Subsection 2.9, the workflow is concluded by incorporating a radio-
metric compensation step aimed at mitigating the effects of atmospheric conditions on
NDVI measurements. The results demonstrate that the radiometric compensation per-
forms effectively. During the evaluation of the radiometric compensation method, the
effect of various sources of uncertainty by using MCS is considered. Following this, in
Subsection 2.9.3.1, the proposed radiometric compensation method is validated by in-
field reference panel reflection then it is applied to uncalibrated images captured in a
pistachio field and compared with ground truth data and compared to results obtained
via the conventional Agisoft Metashape compensation method. This process serves to
validate the model and demonstrate that the proposed radiometric compensation ap-
proach significantly reduces the influence of atmospheric variability, thereby enhancing
the precision and consistency of NDVI assessments.

Finally, the last Subsection 2.12 summarizes the key topics addressed in the study,
while the future work part outlines potential directions for further research in this field.

The content of this chapter has been disseminated through the following venues:
(i) the IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor) in
2022 [2] and 2023 [3]; (ii) the journal Sensors (MDPI, 2024) [4]; (iii) the IEEE I2MTC
2025; and (iv) the journal Measurement (Elsevier, 2025).
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2.1 Related Works

The paper [81] asserts NDVI will undeniably persist as a predominant vegetation met-
ric. However, the efficacy of NDVI depends on the quality of multispectral data and
the accurate interpretation of NDVI values, it is noteworthy that no two RS images are
identical. The primary challenges associated with NDVI encompass its susceptibility to
atmospheric effects, ease of saturation, and variations in sensor quality. This paper criti-
cally examines and explains these significant challenges to guide NDVI users, particularly
end-users lacking in-depth RS expertise, toward a cautious utilization of NDVI data. The
study conducted by [82] claims to enhance hyperspectral imaging from unmanned aerial
systems under diverse weather conditions. The research focuses on addressing two key
challenges: compensating for data captured by the miniaturized hyperspectral sensor
to ensure accurate radiometric and spectral measurements, and mitigating the impact
of tilting the sensor angle relative to the solar rays on downwelling irradiance data.
A method is developed to effectively alleviate tilting effects and accurately correct the
downwelling irradiance data. Furthermore, the study addresses striped illumination arti-
facts in mapping the surface reflectance factor to the hyperspectral radiance images. This
is achieved through comprehensive spectral and radiometric compensation, along with
irradiance correction. The research conducted by [83] is centered on the development
and testing of a comprehensive image pre-processing workflow. This workflow is designed
for the radiometric and geometric correction of UAV-hyperspectral data obtained from a
spectrally complex environment. The detailed procedures encompass sensor compensa-
tion, radiometric correction, automatic band alignment, mosaicking, and georeferencing.
The devised workflow facilitates the efficient acquisition of hypercubes from a challenging
environment with limited ground control points. Unlike conventional methods that rely
on photogrammetric reconstruction for mosaicking, the proposed workflow progressively
generates a mosaicked output by combining different orthogonally projected hypercubes.
Techniques from diverse disciplines to present a simplified workflow effective in challeng-
ing spectrally complex environments are integrated, resulting in a radiometrically and
geometrically accurate mosaicked output at very high resolution. The paper [84] presents
an integrated radiometric compensation methodology tailored for high-resolution UAV-
based multispectral RS utilizing miniaturized large-array commodity Complementary
Metal-Oxide-Semiconductor (CMOS) cameras. The methodology encompasses both in-
door and outdoor radiometric compensation techniques. The outdoor compensation
procedure addresses the correction of atmospheric path radiance and reflectance. This
correction is achieved through the application of an empirical line method derived from
the dark target method. The proposed integrated radiometric compensation method
provides a valuable benchmark for the precise radiometric compensation of large-array
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CMOS multispectral cameras. In the investigation conducted by the paper [85], a thor-
ough examination of hyperspectral atmospheric correction techniques is undertaken,
with a particular focus on mitigating challenges associated with spectral smoothing.
The study identifies and reviews three primary approaches commonly employed in at-
mospheric correction: scene-based empirical approaches, radiative transfer modeling ap-
proaches, and hybrid approaches. In scene-based empirical approaches, methods were
developed to eliminate atmospheric effects in hyperspectral imaging for deriving rela-
tive surface reflectance spectra. The atmosphere removal algorithm in radiative transfer
modeling uses theoretical techniques to simulate atmospheric influences, extracting land
surface reflectance. It models the absorptive and scattering impacts of atmospheric gases
and aerosols. Hybrid approaches combine radiative modeling and empirical methods to
improve surface reflectance derivation from hyperspectral imaging data. The study [85]
underscores the existing need for enhancements in current atmospheric correction algo-
rithms. Specifically, it advocates for integrating a module to model the absorption effects
of atmospheric nitrogen dioxide in the visible spectrum. This proposed augmentation
elevates the accuracy and efficacy of atmospheric correction methods. In [86], the au-
thors compare two deep learning methods, DeepL.abV3+ and a customized Convolutional
Neural Network (CNN), in the application of NDVT for vegetation detection. The evalu-
ation focuses on their detection performance when training and testing datasets originate
from different geographical sites with different image resolutions. Additionally, the study
proposes an object-based vegetation detection approach that incorporates NDVI, com-
puter vision, and ML techniques. Upon comparing the deep learning and NDVI-ML
approaches, the authors observe that the NDVI-ML method yields significantly better
results than the two deep learning methods. Although this may seem surprising given
the general expectation that deep learning methods outperform conventional techniques,
a closer examination of the results and images indicates that these findings are reason-
able from two perspectives. Firstly, the optimal performance of deep learning methods
necessitates a substantial amount of training data. Without sufficient data, the perfor-
mance will not be good. Secondly, for satisfactory performance, it is advantageous for the
training and testing images to closely resemble each other to be suitable for use in deep
learning methods. In the paper [73], thermal, multispectral, and RGB images obtained
from UAVs are used to calculate various parameters related to plant growth and water
consumption. Specifically, the study claims to assess actual canopy Transpiration (Tr),
soil Evaporation (E), and EvapoTranspiration (ET) of potato plants grown under dif-
ferent irrigation treatments on sandy soil. The traditional method of estimating Tr and
E using the Two-Source Energy Balance model - Priestley-Taylor equation (TSEB-PT)
with satellite-derived Land Surface Temperature (LST) has limitations in accuracy, es-
pecially at high spatial-temporal resolutions. The paper in [73] proposes an energy flux
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modeling framework based on TSEB-PT, leveraging high-resolution thermal and mul-
tispectral data collected by UAVs. The research, conducted during drought conditions
in 2018 and 2019, recorded diurnal variations of LST in agricultural fields. The results
showed that a 1 m spatial resolution produced the highest correlation for estimating Tr
compared to other resolutions. This paper’s model shows how well it can accurately
predict irrigation needs and differentiate between drought and heat stress impacts on
crop productivity. In the paper [87], the influence of operation parameters such as Solar
Zenith Angle (SZA), Time Of Day (TOD), Flight Altitude (FA), and the growth level of
paddy rice on UAV-acquired NDVI values was comprehensively evaluated. Results indi-
cated significant impacts of these parameters on UAV-NDVIs, with SZA /TOD exerting
the largest influence, followed by growth level and FA. Notably, smaller SZAs yielded
higher SNRs, reflecting more realistic growth status values. These findings are crucial
for optimizing flight campaigns aimed at collecting NDVTI values over paddy rice fields,
providing valuable insights for PA applications. The study [88] investigates the impact
of time of day and sky conditions on various VIs derived from both active and passive op-
tical sensors, as well as from imagery captured by a UAV. Conducted in a wheat crop in
south-west Germany with varying nitrogen application treatments, measurements were
taken at different solar times and under sunny versus overcast conditions. Results reveal
significant differences in most VIs between paired time measurements, with the smallest
variations observed between 14:00 and 16:00 h. The most stable indices over time and
sky conditions were the NIR/R edge ratio, water index, and REIP index, while simple
ratios like NIR/R and NIR/Green were more variable. Passive hyperspectral sensors and
the active Crop Circle ACS num 470 sensor demonstrated the most stable measurements
throughout the day and under different sky conditions. Notably, the handheld passive
spectrometer showed slightly higher dependency on time and sky conditions compared
to the vehicle-based sensor. The study suggests that with careful selection of optimized
indices, both ground-based and UAV-based sensors can provide reliable measurements
across varying environmental conditions, offering valuable insights for on-farm applica-
tions in PA. The study in [89] evaluates four radiometric compensation methods for UAV
imagery to enhance accuracy in agricultural monitoring, particularly for tracking crop
growth and estimating plant traits such as Above Ground Biomass (AGB) and LAI. The
methods examined include: (A) camera-only compensation, which adjusts images based
on camera properties and known reflectance targets; (B) camera with sun irradiance
adjustment, which normalizes images using data from a sun irradiance sensor to account
for lighting variations during the flight; (C) camera with sun irradiance and sun angle
adjustment, which further refines compensation by considering the direction of sunlight
and the sensor-camera angle; and (D) an irradiance sensor-based method that uses an
external sensor to measure sunlight and adjust images accordingly, eliminating the need
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for a reference target. UAV flights were conducted over a winter wheat field at different
altitudes (30m, 60m, and 90m) and times of day under both clear and cloudy skies.
The study analyzed how lighting conditions, flight altitude, and time of day under both
clear and cloudy skies influenced reflectance and the VIs. Results indicated that method
D provided the most consistent reflectance, particularly in the morning and under stable
illumination. In contrast, methods B and C exhibited errors due to incorrect sun sensor
angles, which impacted reflectance calculations but had minimal effect on VIs. Under
cloudy skies, method D was effective unless direct sunlight was obstructed. Flight al-
titude significantly influenced reflectance and VlIs, affecting LAI estimates but having
little impact on AGB calculations. Additionally, the study highlighted that sunlight
can vary considerably during longer UAV flights, especially around sunrise and sun-
set, underscoring the need for careful radiometric compensation to ensure accurate data
collection. The paper [55] focuses on radiometric compensation of multispectral UAV
imagery under varying imaging conditions using the Linear Regression Method (LRM).
LRM estimates surface reflectance by modeling the linear relationship between DN val-
ues and reflectance using reference targets. It involves measuring DN values, deriving
compensation equations, and applying them to all bands for compensation. Radiomet-
ric compensation was performed using a Mini MCA 6 camera mounted on a UAV, with
images captured at different flight altitudes, flight times, and weather conditions. The
methodology involved testing and selecting optimal reference targets. The results con-
firmed that using dark, moderate, and white reference targets improved compensation
accuracy. Atmospheric effects increased with altitude, but reflectance variations were
minimal at altitudes below 100m. This study also tested mosaic images to assess the
impact of image stitching on radiometric compensation accuracy. Results showed that
mosaicking introduced minor errors but did not significantly affect reflectance values,
supporting the use of mosaic images for radiometric compensation efficiency. The LRM
performed well under different weather conditions, but cloud cover influenced reflectance
measurements, with lower values recorded on cloudy days. The findings emphasize the
importance of proper radiometric compensation to ensure accurate NDVI and VIs in
UAV-based remote sensing applications [55]. The study [90] evaluated five radiomet-
ric compensation methods for multispectral Unmanned Aerial System (UAS) imagery
using a Parrot Sequoia camera. Data were collected with a fixed-wing UAS, processed
in Pix4D, and accuracy was assessed using RMSE and validation targets. The meth-
ods are as follows: (A) One-Point compensation involved capturing images of a target
with known reflectance at different viewing angles during the flight, allowing Pix4D to
calibrate the data based on reflectance differences in each camera band; (B) One-Point
compensation Plus Sunshine Sensor expanded on method A by incorporating sunshine
sensor data collected during the flight, the default approach in Pix4D for calibrating
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multispectral images from the Parrot Sequoia R camera; (C) Pre-compensation using
the Simplified Empirical Line followed the approach of Wang and Myint (2015), where
a grey reference panel was placed in the study area, and relationships between its re-
flectance and raw DN values were established to calibrate raw images before processing
in Pix4D; (D) One-Point compensation Plus Sunshine Sensor Plus Post-compensation
initially applied Method B, followed by an additional compensation using the empirical
compensation targets from Method C, mapping and correcting reflectance differences
across the study area via Inverse Distance Weighted (IDM) interpolation, which esti-
mates values based on nearby points, giving more weight to closer ones for smoother
compensation; (E) Post-compensation Using the Simplified Empirical Line performed
radiometric compensation after image processing, using reflectance-DN relationships
from Method C to correct processed rasters by subtracting mapped reflectance differ-
ences. These methods were tested to assess their effectiveness in improving radiometric
accuracy in UAV imagery. Radiometric errors were analyzed to determine their im-
pact on VIs like NDVI and Normalized Difference Red Edge Index (NDRE). Results
showed no single method was consistently best. The combined manufacturer and em-
pirical approach (Method D) had the highest accuracy, followed by the post-processing
empirical method (Method E) [90]. The paper [91] investigates radiometric compen-
sation for occluded crops using high-resolution UAV imagery, addressing the issue of
shadow-induced distortions that impact crop characterization. A brightness tuning and
thresholding approach was applied to restore radiometric properties in occluded areas,
allowing for improved classification of crops like maize and soil. Various classification
algorithms, including K Nearest Neighbors (KNN), Maximum Likelihood, Multi Layer
Perceptron (MLP), and Object Oriented Segmentation (OOS), were used to assess the
impact of radiometric compensation on land feature classification. KNN, which classi-
fies pixels based on their similarity to neighboring labeled pixels, predicted a 40.56 %
increase in maize coverage and a 12.37 % increase in soil area after radiometric compen-
sation. The Maximum Likelihood classifier, which assigns pixels based on probability
distributions, estimated an 18.03 % increase in maize coverage and a 1.46 % increase in
soil area. MLP, a neural network-based approach that captures complex patterns in
data, showed a 22.42 % increase in maize and a 10.05 % increase in soil coverage. Unlike
pixel-based methods, OOS groups pixels into objects based on spectral, spatial, and tex-
tural properties. The OOS classifier predicted the highest increases, with maize coverage
expanding by 30.64 % and soil area by 14.29 %. These results indicate that radiometric
compensation enhances the classification of occluded land features, improving the accu-
racy of land cover assessments [91]. The paper [92] tested five compensation methods
for the MicaSense RedEdge MX Dual Camera System: Agisoft Metashape Single Panel
Compensation (AMSP), Pix4D Fields Single Panel Compensation (P4DSP), Agisoft
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Metashape Multiple Panel Compensation (AMMP), MicaSense Single Panel Compen-
sation (MSSP), MicaSense Multiple Panel compensation (MSMP), and Empirical Line
Method Multiple Panel compensation (ELMMP). AMSP and P4DSP use raw TIF im-
ages with a single reference target for compensation and follow the default workflows
in Agisoft Metashape and Pix4D Fields, respectively. The AMMP method applies an
empirical line compensation to the orthophoto generated by AMSP. MSSP, MSMP,
and ELMMP involve a pre-processing step in Python to correct raw images before us-
ing Agisoft Metashape. The methods were evaluated using RMSE, bias, and Relative
Root Mean Square Error (rRMSE), and the results indicate that more complex methods
like ELMMP improved calibration accuracy, especially in clear-sky conditions. However,
in overcast conditions, the accuracy of simpler methods like Pix4D Fields and Agisoft
Metashape was still quite reasonable, making them viable for faster and less complex
workflows. For highly accurate calibration, especially in variable weather conditions, the
ELMMP method provided the best performance, but the choice of method depends on
the specific requirements of the project (accuracy vs. speed) [92]. The study [93] aimed
to improve the quality of UAV multispectral images captured with the DJI Mavic 3 Mul-
tispectral (M3M) camera, with the help of the white paper [1]. UAV imaging is cheaper
and provides high-resolution images, but when stitching multiple images together to
cover large areas, issues like visible seam lines and varying light conditions arise. To
solve these problems, the study applied different compensation methods to make the
images more accurate, including irradiance compensation, which adjusts pixel values
based on variations in lighting due to sunlight angles and terrain, ensuring consistent
illumination across the image. Vignette compensation addresses the darker edges caused
by lens design by applying a model that normalizes brightness, particularly at the image
corners, for a more uniform appearance. Lastly, Bidirectional Reflectance Distribution
Function (BRDF') compensation compensates for surface reflectance variations by mod-
eling how light interacts with surfaces at different angles, ensuring consistent reflectance
across the mosaic. Together, these techniques enhance the final image’s accuracy and
smoothness, making it more reliable for further analysis and reducing visual distortions.
And results indicated that applying both BRDF and vignette filters produced accurate
outcomes, even with lower image overlap, and the method improved the accuracy of
reflectance-based indices like NDVT [93]. In the literature, several indices are proposed;
however, their uncertainties are not often assessed. The important contributions of the
current study, particularly from a metrological perspective, involve evaluating the im-
pact of uncertainty sources on NDVI measurements. In addition, various studies have
proposed different methods for radiometric compensation by assessing model perfor-
mance, often through metrics such as RMSE, examining the accuracy of ML and DL
models, or checking the effect of radiometric compensation on the resulting VIs. From a
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metrological point of view, it remains an open challenge to find an efficient radiometric
compensation method, assess its impact on a VI, and test it against ground truth VI
measurements. However, the novelty of the present study lies in the development of a
radiometric compensation method, which is guided by the white paper [1] using a hybrid
approach. This approach includes: (i) the emulation of reference panels composed of
Permaflect sheets that cover a range of reflectance values (5%, 10 %, 18 %, 50 %, 80 %,
and 94 %) - these panels facilitate effective radiometric compensation under various light-
ing and surface conditions, and (ii) adding the reflection of a real reference panel which
is used in real scenarios. Moreover, in this study, the impact of some uncertainty sources
is considered during the evaluation of the radiometric compensation method, which is
neglected in the literature. The proposed method is then applied to multispectral UAV
images, with the evaluated NDVI values validated against ground-truth NDVI measure-
ments and compared to conventional approaches used in Agisoft Metashape—aspects
often overlooked in previous research.

2.2 UAV-based Measurement Systems for PA

UAVs are classified into various types based on their design, wings, size, weight, degree
of autonomy, and power source [94]. During their flight missions, they must (i) control
their altitude, (ii) avoid obstacles, (iii) land automatically based on battery state, (iv)
stabilize during image acquisition, (v) estimate their position, and (vi) avoid objects
along their mission path. To perform these tasks, UAVs require a basic architecture
and two types of sensors: navigation sensors and mission sensors [95]. The basic UAV
architecture generally includes (i) a frame and propellers, (ii) brushless motors, (iii)
Electronic Speed Control (ESC) modules, (iv) a control board, (v) an Inertial Naviga-
tion System (INS), and (vi) transmitter and receiver modules [95]. Navigation sensors
are crucial for UAV flight control [96], comprising (i) an IMU, (ii) Global Positioning
System (GPS) or Differential GPS sensor, (iii) Light Detection and Ranging (LiDAR),
(iv) ultrasonic sensors, (v) barometers, and (vi) accelerometers, gyroscopes, and mag-
netometers. Mission sensors and actuators are typically located in the payload. In
PA, UAV payloads include RGB, multispectral, hyperspectral, and thermal cameras, as
well as LiDAR systems. Standard aerial images captured by RGB cameras cover the
visible part of the ElectroMagnetic (EM) spectrum. Utilizing other parts of the EM
spectrum, such as the infrared band, provides more detailed information about an ob-
ject’s surface and interior. Cameras that capture spectral data from specific parts of the
EM spectrum are called multispectral or hyperspectral cameras. Airborne multispectral
imaging systems typically use 3 to 10 single-wavelength bands, each with a filter lens for
a specific band, allowing data analysis from composite images or individual bands [97].
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Multispectral cameras are used to quantify the state of monitored vegetation in terms
of (i) chlorophyll content, (ii) leaf water content, and (iii) ground cover, such as LAI,
and so on. However, the reflectance from different vegetation species is highly corre-
lated due to their similar biochemical and biophysical properties, which are influenced
by environmental factors. Spectral variations can also occur within a species due to
differences in age, micro-climate, soil and water background, precipitation, topography,
and stress factors. Hyperspectral sensors collect data in numerous small and continuous
wavelength bands, typically hundreds of narrow bands between 5nm and 10nm [9§],
allowing for the estimation of vegetation biophysical and biochemical parameters (e.g.,
pigment concentration, nitrogen) and the detection of subtle changes, such as stress
signs, with high sensitivity and accuracy. Hyperspectral imagery has proven effective in
accurately discriminating vegetation species [99]. However, compared to multispectral
imagery, hyperspectral imagery is more expensive and time-consuming to acquire, even
for small areas [97]. Thermal cameras measure surface temperature, which plays a cru-
cial role in plant physiological processes. In recent years, thermal sensors have gained
popularity due to technological advancements and cost reductions. They enable rapid
monitoring of plant growth and stress. There are two types of thermal cameras: cooled
and uncooled. Thermal cameras used for satellite applications operate at very high tem-
peratures (196°C) and require robust cooling systems. The more efficient the cooling
system, the more accurate the measurements [61]. However, cooled sensors are large,
heavy, expensive, and consume more energy, making them unsuitable for UAVs. Un-
cooled thermal cameras, with less sensitive detectors (£0.1°C), are ideal for UAVs [61].
Thermal images from UAVs provide valuable information for agronomic applications
with greater temporal and geographical resolution than satellite images [100].

2.2.1 Basic Principles of Thermography

When the light impinges on a black body, the light is completely absorbed without any
reflection or transmission. The absorbed energy is transferred to the kinetic energy of the
charged particles of the black body, and naturally, the body’s internal energy increases.
There is a direct relationship between the surface temperature of a black body and the
intensity of the light it emits. This relationship is described by the Stefan-Boltzmann
Law. The black body is an ideal model; however, in real applications, objects do not
completely absorb the light but reflect or transmit some part of it. The term that shows
how close a real object can be to an ideal black body is called emissivity e. The object
having emissivity equal to one means it completely absorbs the light and is considered an
ideal black body, while, when the emissivity is zero, it means the object does not absorb
any light and the light is completely reflected, so-called “White Body”. Measuring the
real object emissivity is a kind of uncertainty source. To measure the power emitted by
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an object in the real world, the object’s emissivity is multiplied by the Stefan-Boltzmann
Law formula [101].
P=c¢c-o-A-T (2.1)

Where A is the object’s surface area, T is its temperature, and o is the Stefan-Boltzmann’s
constant (5.67-1078W -m~2. K—4). The power emitted by an object is captured by the
thermal camera and shown in thermal images.

2.2.2 Basic Fundamentals of Spectral Imaging

Light propagates energy radially from a source, and a light beam can be described as a
stream of particles known as photons. The energy of an individual photon, which is a
quantum of energy, is quantified by Planck’s equation, indicating a direct proportionality
to its frequency [102]. When light encounters an object, three primary interactions can
occur: reflection and scattering, absorption, or transmission of the photons. Addition-
ally, the object may emit light. The distinction between reflected and emitted light lies
in their origins; emitted light consists of photons generated by an intrinsic light source,
while reflected light comprises photons originating from an external source.Moreover, it
is essential to clarify two key concepts: radiance and irradiance. Irradiance refers to the
total light incident on a point from all possible directions, while radiance denotes the
light incoming to a point from a specific direction. Radiance is simply irradiance nor-
malized by the solid angle (in steradians) corresponding to the observation direction of
light propagation. In the context of RS, the electromagnetic spectrum serves as a crucial
domain, especially for data acquired through UAV platforms utilizing multispectral or
hyperspectral imaging techniques. The interaction of solar radiation with atmospheric
gases and aerosols modifies the solar irradiation spectrum before it reaches the Earth’s
surface. This alteration impacts the radiance reflected from the Earth’s surface, a phe-
nomenon particularly relevant when analyzing vegetation through UAVs multispectral
cameras. Fig. 2.1 visually illustrates this scenario, highlighting the complex interactions
between solar irradiation, atmospheric components, and the resultant reflected radiance
captured by a UAV multispectral camera. Understanding and mitigating atmospheric
effects on acquired data is essential for precise and reliable vegetation analysis in RS ap-
plications [103]. Moreover, the effects of atmospheric conditions are amplified when the
multispectral sensor is deployed on a satellite, as light must pass through atmospheric
layers twice. In contrast, for UAVs, which typically fly at low altitudes around 100
meters, the effect of the atmosphere below the UAV is negligible compared to the total
atmospheric effect. Therefore, only the single path from the sun to the ground is consid-
ered. Spectral radiance, denoted in W sr~! m—2 pm~!, measures the energy flux detected
by a sensor in a specific wavelength. For practical storage and analysis, these radiance
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FIGURE 2.1: The diagram illustrates the interactions between solar radiation (S;.(A)), the
Earth’s atmosphere, and the Earth’s surface. Initially, solar radiation penetrates the atmo-
sphere and undergoes scattering and absorption by atmospheric particles and gases, with
H,(\) representing the atmospheric effect response. The multispectral camera mounted on
the UAV captures the reflected radiance (Ls(A)), which contains valuable information about
surface properties, such as vegetation features [4].

values are transformed into Digital Numbers (DNs), or pixel values. The bit-depth for
DN representation varies by sensor type, including 6-bit or 7-bit for Multispectral Scan-
ner (MSS) sensors, 8-bit for DJI P4-multispectral camera, Thematic Mapper (TM), and
Enhanced Thematic Mapper Plus (ETM+) sensors, and 12-bit for Landsat 8 sensors [81].
A spectral sensor measures the spectral radiance Lg(A) which can be expressed by the
following equation [104]:

Lo(N) = p(A) - Li(A) (2.2)

Here, Lg(A) represents the product of the scene radiance L;(\) and the material re-
flectance spectrum p(A), both as functions of wavelength A\. The reflectance spectrum
p(A) can be used to identify materials in a scene, as it is independent of the illumina-
tion conditions. By comparing the reflectance spectra from the scene to a library of

I5¥ .
i, UNIVERSITA DEGLI STUDI
DEL SANNIO bencvento



Chapter 2. Use of UAV for PA: Evaluating Uncertainty of NDVI Measurement 29

known spectra, material identification becomes possible [104]. With more detail L;()\) is
evaluated from the solar radiance, S;(\), multiplied by the atmospheric effect response,
H,(N\):

Li(A) = Sir(A) - Ha(N) (2.3)

From a metrological perspective, estimating p(\) necessitates measuring L;(\). Typi-
cally, a radiometer is mounted on a UAV platform to record solar irradiance for this
purpose. In the context of multispectral cameras, the incident light sensor captures the
irradiance for each band. Consequently, by measuring L;(\) and Ls(\) using Equation
(2.2), p(A\) can be determined.

2.2.3 Sampling Operations for Spectral Imaging

Spectral image data collection involves four primary sampling operations: spatial, spec-
tral, radiometric, and temporal. The combined data from these operations is represented
in a three-dimensional hyperspectral data cube, as shown in Fig. 2.2. In this cube, the
z and y axes correspond to spatial information, while the z axis represents spectral
data [104]. Spectral information is obtained by decomposing the radiance received in
each spatial pixel into several wavebands. These wavebands can vary in resolution and
may be overlapping, contiguous, or separate, depending on the sensor design. The analog
radiance measured in each spectral channel is then converted to digital data at a spec-
ified radiometric resolution, referred to as the radiometric sample. Temporal sampling
involves collecting multiple spectral images of the same scene at different times [104].
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FIGURE 2.2: Structure of a hyperspectral data cube. The cube consists of two spatial dimen-
sions (z, y) representing the scene, and one spectral dimension A representing the range of
wavelengths captured. Each pixel in the spatial plane contains a spectrum of intensity values
across numerous narrow, contiguous wavelength bands, providing detailed spectral information
for material identification and analysis.

2.3 Compensation Methods for Environmental Effects

Several sources of uncertainty affect spectral measurements, including atmospheric ab-
sorption and scattering, reflection from nearby objects, other environmental effects, and
object emissivity, as illustrated in Fig. 2.3. The atmosphere’s wavelength-dependent ab-
sorption and scattering of light significantly impact sensor imaging by: (i) modulating
solar illumination before it reaches the ground, (ii) scattering some solar radiation into
the sensor’s field of view without reaching the ground, and (iii) acting as a secondary
source of diffuse colored illumination, particularly in the blue region of the visible spec-
trum, which illuminates objects in shadow under direct sunlight. Additionally, clouds
and ground cover can cast shadows on the target, altering surface illumination. More-
over, nearby objects may also reflect or scatter sunlight onto the target, adding various

Ly UNIVERSITA DEGLI STUDI
DEL SANNIO ecocveno



Chapter 2. Use of UAV for PA: Evaluating Uncertainty of NDVI Measurement 31

Nearby Objects Reflection

L
F 4
)
- A =
AL ) 3
| &t @ B\
Solar Modulation O Solar Scattering
Cloud Shadowing INluminated Shadowing

F1GURE 2.3: Uncertainty sources affecting UAV spectral imaging.

colored illuminations to the primary direct solar illumination [104]. To estimate and com-
pensate for atmospheric effects in multispectral or hyperspectral imaging, four methods
are proposed in the literature: (i) the Path Radiance Method (PRM), (ii) the Empirical
Line Method (ELM), (iii) methods based on UAV or ground radiometric sensor measure-
ments, and (iv) methods utilizing LIDAR for shadow compensation. The PRM involves
developing a mathematical model that describes the relationship between ground re-
flectance and radiance under specific atmospheric conditions, enabling the correction of
sensor data for atmospheric disturbances. The ELM, on the other hand, compensates
for atmospheric effects by observing reference objects with known reflectance proper-
ties placed in the surveyed environment, thereby adjusting the sensor images based on
these known standards. For varying light conditions, radiometric sensors mounted on
UAVs, on the ground, or both to measure solar irradiance, allowing for corrections that
account for changing illumination during the data acquisition process [105]. This ap-
proach ensures that the spectral data remains consistent despite fluctuations in lighting.
Additionally, for shadow correction, geometric information from 3D terrestrial LiDAR
data can be employed to compensate for illumination inconsistencies and neighborhood
effects in close-range HSI [106]. By incorporating the 3D structure of the terrain, LIDAR
data helps to accurately model and correct for shadows, thereby enhancing the accu-
racy of the hyperspectral measurements. In PA, addressing uncertainties is crucial for
accurate multispectral and hyperspectral data interpretation. Variations in atmospheric
conditions, crop and soil reflectance, and sensor angles require site-specific calibration
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and careful planning of UAV flight paths. Advanced algorithms help correct these fac-
tors, improving the reliability of spectral data for assessing crop health, detecting stress,
and optimizing resource use.

2.4 Figures of Merit in PA

Several VIs based on reflected electromagnetic energy, such as NDVI, NDMI, and CWSI,
have been proposed to assess vegetation health and soil condition [62]. The NDVT is
a widely utilized index for assessing vegetation health, based on the distinct optical
properties of chlorophyll in green vegetation. Chlorophyll absorbs radiation primarily in
the R and blue wavelengths while reflecting significantly in the green and NIR regions.
Monitoring NIR reflectance is a reliable method for evaluating the health and vigor of
vegetation, and NDVI is calculated using the following equation [99, 107].
NIR - R

NDVI = NIRT R (2.4)
Here, NIR and R are the percentages of the object’s reflection in the NIR and R spectra
bands, denoted as p(NIR) and p(R), respectively. These values are calculated as the
ratios of Ls(A\) to L;(A) based on Equation (2.2). NDVI values range from —1 to 1.
Negative values indicate the presence of water, values close to 1 indicate dense green
vegetation, and values around zero indicate a lack of green vegetation. Plant water
stress is a critical component of abiotic stress. Early detection of heat stress symptoms,
before the onset of irreversible damage, enables the implementation of optimal irrigation
schedules. This proactive approach not only alleviates water stress but also mitigates
the effects of heat stress. The NDMI offers valuable insights into moisture levels within
vegetation. Spectral reflectance in the SWIR range is regulated by water availability
within the leaf structure, while NIR reflectance is primarily influenced by the internal
leaf structure and dry matter, independent of water content. By integrating NIR and
SWIR reflectance measurements, the accuracy of vegetation water content retrieval is
significantly enhanced. The NDMI is calculated as follows [107]:

NIR - SWIR
NDMI = ——————— 2.5
NIR+ SWIR (2:5)
Like NDVI, NDMI values range from —1 to 1. Negative values indicate bare soil, values
near zero suggest high water stress or moderate to low canopy cover, and positive values

indicate full canopy cover and no water stress. The CWSI assesses water deficits by
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analyzing the temperature of vegetation. [108]:

CWSI = Tcanopy - Twet

2.6
Tdry — Twet ( )

where Ttqnopy is the average canopy temperature, and Ty,e; and Ty, are the temperatures
of reference surfaces that are completely wet and dry, respectively. Evaluating T%.qnopy
requires separating pure canopy pixels from the background (including the sky, soil, and
artificial objects), as discussed in [98]. CWSI values range from —1 to 1, with —1 to 0
indicating excess water and 1 indicating no water availability. The degree of water stress
when CWSI is between 0 and 1 depends on the type of plant or soil. Generally, as crop
stress or soil water deficit increases, the CWSI value increases [109]. Two main issues
have limited the widespread use of CWSI: changing atmospheric conditions and dis-
tinguishing pixel temperatures between background soil and pure canopy temperature.
Although UAV platforms are less affected by these issues compared to satellites, as they
experience fewer atmospheric condition changes and provide higher spatial resolution.

2.5 Measurement Uncertainty Assessment

GUM provides a framework for assessing this uncertainty, offering two methods (Type
A and B) for evaluation [110].

2.5.1 Mathematical Model for Evaluating Standard Uncertainty of
NDVI

In this part, the application of the law of propagation of uncertainty based on the GUM
to assessing the uncertainty of the NDVI is employed. The uncertainty is derived from
an assumed probability density function, based on the degree of belief regarding the
occurrence of an event. This method, also known as subjective probability, relies on
scientific judgment and considers all available information about the possible variability
of the inputs. Consider a measurement model Y that is indirectly computed from N
other quantities. Theoretically, the uncertainty of Y is evaluated concerning these N
terms. The calculation of uncertainty varies depending on whether the input quantities
are independent or dependent. For uncorrelated input quantities, the combined standard
uncertainty u.(y) is computed as follows:

2w =3 (2 e 2.1

i=1
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For correlated input quantities, the combined standard uncertainty u.-(y) is given by:

=i 2y Y (52) - (52) vtoie (2.8

i=1 j=i+1

The uncertainty model for the NDVI varies based on whether the input reflections in
the R and NIR bands are correlated or uncorrelated. This relationship is influenced by
factors such as camera technology and bandwidth overlap. For cases where the input
quantities are uncorrelated, the uncertainty of NDVI is determined as follows [110]:

uz(NDVI)_[ 2- R )Q}Q.ﬁ(NIR)

(R+ NIR

]

(2.9)

For correlated input quantities, the uncertainty of the NDVT is expressed by [110]:

uZ (NDVI) = u2(NDVI) + 2 [ 2 R } _ [ _2.NIR

(R+ NIR)? (R+NIR)2}'H(R’NIR> (2.10)

These formulas allow us to quantify the uncertainty in NDVI measurements, thereby
improving the reliability and accuracy of vegetation health assessments in PA.

2.6 Preliminary Evaluation of NDVI Uncertainty Using
the Law of Propagation of Uncertainty According to
the GUM

This section presents a preliminary assessment of the measurement uncertainty related to
NDVI by modeling vegetation reflection, the camera sensor’s nominal wavelength, while
considering wavelength variation as an uncertainty source. This evaluation is conducted
based on the uncertainty assessment as outlined in the GUM [2].

2.6.1 Vegetation Reflection

When the light incident on a part of a plant, it can be reflected, scattered, absorbed,
or transmitted [2]. Various plant species can be distinguished based on their ability
to absorb specific wavelengths of light, and the resulting images of their reflected solar
energy are referred to as their spectral signatures. These signatures have been extensively
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FIGURE 2.4: The spectral reflectance of fresh and dry Douglas fir leaf samples, randomly
selected from the seedling canopy study site, is depicted within the wavelength range of (a)
400 nm to 980 nm, (b) the R band, and (c¢) the NIR band [2] (C) 2022 IEEE.

documented through comprehensive laboratory measurements [2, 111]. To quantify these
spectral signatures, the property of spectral reflectance is considered and used. The
plant’s spectral reflectance, p(\), is evaluated from Equation (2.2) as follows [2]:

_ Ls(N)
- Li(\)

(V) (2.11)

where Lg(A) is the reflected energy by the plant, and L;(A) is the incident energy, across
different wavelengths [104]. The graphical representation of a plant’s spectral reflectance
as a function of wavelength is known as the spectral reflectance curve [112, 2]. Fig. 2.4
displays the spectral reflectance curves of fresh and dry leaf samples of Douglas fir, cap-
tured in the visible and NIR wavelength bands. These samples were randomly selected
from the seedling canopy study site of Douglas fir during the Accelerated Canopy Chem-
istry Program (ACCP) data collection [113]. The dataset comprises samples ranging
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from 400 to 2498 nm at 2nm intervals, with a resolution of 10nm. In the experimental
part of this research, we focused on the reflectance of dry and fresh vegetation from
400 to 980 nm, as shown in Fig. 2.4a. The purpose of using these data is to evaluate a
mathematical model for NDVI estimation. To achieve this, the part of the data related
to the reflectance in the R and NIR bands is selected, and the best-fitting curves with a
Root Mean Square Error (RMSE) of less than 0.001 by using MATLAB tools is evalu-
ated. These curves, along with their corresponding data, are presented in Fig. 2.4b and
Fig. 2.4c, [2].

2.6.2 Camera Sensor

Suppose the experimental data are captured using a UAV multispectral camera, such
as the DJI P4-multispectral camera [114]. This camera features six 1/2.9 CMOS sen-
sors, including an RGB sensor for visible light images and five monochrome sensors for
multispectral image acquisition, with filters at R: 650nm 4+ 16 nm and NIR: 840nm
+ 26 nm. For this example, it is hypothesized that the bandwidth of the multispectral
camera for both R and NIR is comparable to the bandwidth of a hyperspectral camera,
approximately 10nm. DJI P4-multispectral camera has non-overlapping filter bands in
R and NIR, where these two bands are used for NDVI measurements [2].

2.6.3 Experimental Part and Results

In this part, the DJI P4-multispectral camera, which has non-overlapping filter bands,
is utilized to evaluate the primary uncertainty in the NDVI model. Due to the un-
correlated nature of the input in the NDVI evaluation, Equation (2.9) is applied [2].
To assess the uncertainties in the reflectance measurements in the R and NIR bands,
denoted as u(NIR) and u(R), it is assumed that these uncertainties follow a uniform
distribution. In this scenario, u(NIR) and u(R) are equivalent to their standard devi-
ations within each band, evaluated from the derivation of the mathematical model of
their fitting curves (Figs. 2.4b and 2.4c¢). These standard deviations are then multi-
plied by their respective tolerance wavelengths (based on the camera specifications) and
divided by /3. Subsequently, to evaluate the combined uncertainty of the NDVI mea-
surements, u.(NDVI), Equation (2.9) is used [2]. The quantities of reflectance values
in the R and NIR bands are selected in three ways: (i) from the dataset within the
R and NIR bandwidths, (ii) as random numbers between (0,1), and (iii) as sequential
numbers between (0,1). Assuming that the NDVI measurements follow a Gaussian dis-
tribution, we use a coverage factor k = 3, corresponding to a 99.7% confidence level, to
ensure the highest level of confidence. The resulting NDVI values and their expanded
uncertainties are presented in Fig. 2.5 and Table 2.1 for these three data models [2].
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TABLE 2.1: Plural maxima and plural minima values of NDVI measurements and their ex-
panded uncertainty for data selected from dry and fresh vegetation data set, random, and in
order numbers between (0, 1) with three levels of wavelength tolerance [2] (C) 2022 IEEE.

Data O\ | Min(NDVI) | Max(NDVI) | Min(Uncertainty NDVI) | Max(Uncertainty NDVI)
DataSet Dry Leaf | 1/2 0.418 0.75 0.024 0.036
DataSet Dry Leaf 1 0.418 0.75 0.049 0.071
DataSet Dry Leaf 2 0.42 0.75 0.073 0.11

DataSet Fresh Leaf | 1/2 0.546 0.827 0.025 0.035
DataSet Fresh Leaf | 1 0.546 0.827 0.050 0.070
DataSet Fresh Leaf | 2 0.546 0.827 0.074 0.10
Random (0 1) | 1/2 093 0.93 0.006 0.22
Random (0 1) 1 -0.93 0.93 0.01 0.45
Random (0 1) 2 -0.93 0.93 0.02 0.67
Inorder (01) | 1/2|  -0.80 0.82 0.007 0.084
Inorder (0 1) 1 -0.80 0.82 0.01 0.17
Inorder (0 1) 2 -0.80 0.82 0.02 0.25

Table 2.1 also displays the plural maxima and plural minima NDVI values and their
expanded uncertainties for the experimental dataset, including dry and fresh vegetation,
and random and sequential numbers. Additionally, various tolerance values have been
considered by scaling the tolerance wavelength o\ of the DJI P4-multispectral camera
by factors of % to 2. The results obtained from these considerations are also reported
in Table 2.1, [2]. According to the results, for example, when the NDVI value is 0.6823
for p(R) = 0.101 and p(NIR) = 0.5716, the uncertainty value is computed as 0.067.
For the NDVI measurement and its uncertainty, in the first case, the relationship be-
tween R and NIR reflectance is inversely proportional. This means that a decrease in
R reflectance and an increase in NIR reflectance result in higher NDVI values and cor-
responding uncertainty values. Additionally, the results indicate that smaller variations
in NIR reflectance combined with larger variations in R reflectance lead to higher NDVI
and uncertainty values [2].

2.7 Extension of the Preliminary Evaluation of NDVI Un-
certainty Through Modeling the Camera’s Optical Den-
sity

A preliminary model for evaluating the uncertainty of NDVI measurements was proposed

in Section 2.6 and paper [2]. While this model considers vegetation reflectance within

a specific wavelength, it does not account for the camera’s incident OD. In practical
scenarios, cameras capture the OD of the reflected light within the fixed range of the
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FI1GURE 2.5: The values of NDVI measurement and their expanded uncertainty for three ways
of data selection [2] (C) 2022 IEEE.

camera bandwidth for a specific wavelength [3]. This section proposes an uncertainty
model for NDVI measurements that considers the limited bandwidth of the sensors
embedded in a multi-spectral camera and the variability in OD within their nominal
wavelengths, specifically in the R and NIR bands, during the process of spectral data.
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This variability is an uncertainty source in the NDVI measurements [3].

2.7.1 Modeling of Vegetation Reflectance and Camera Sensors for NDVI
Assessment

This section outlines the approach to modeling vegetation reflectance and camera sen-
sor performance, incorporating vegetation properties and sensor specifications for more

accurate NDVI measurements, as shown in Fig. 2.6, [3].

Camera Sensor

Vegetation
Reflection

Dry Fresh Nominal .
Bandwidth
Vegetation Vegetation Wavelength anawl

FIGURE 2.6: Modeling Vegetation Reflectance and Camera Sensor Performance for NDVI
Assessment [3] (©) 2023 IEEE.

1. Vegetation Reflectance Characteristics: The model considers the spectral
reflectance properties of vegetation in both dry and fresh states. These charac-
teristics, which influence the reflectance measurements in the R and NIR spectral
bands as modeled in subsection 2.6.1, are used for NDVI calculation.

2. Camera Sensor Attributes: The model incorporates the camera sensor’s nomi-
nal wavelength and filter bandwidth, as variations in these parameters can impact
the accuracy of reflectance measurements and, consequently, the NDVI values.
Additionally, the model includes the sensor’s capability to capture OD within a
specified wavelength range.

2.7.2 Modeling Camera Sensor

According to the details in subsection 2.2.3, hyperspectral camera sensors capture spec-
tral images as three-dimensional data cubes, illustrated in Fig. 2.7a [115, 2]. In this data
cube, the (x,y) coordinates represent the spatial dimensions, while the third dimension,
A, records spectral information as OD, expressed in units of (watts - steradian™! - m~2 .
nm~!) [116, 3]. OD quantifies the amount of light or radiance blocked by a filter. Prac-

tically, camera sensors measure OD within a specific bandwidth around their nominal
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FIGURE 2.7: (a) Data cube of a hyperspectral image, (b) OD spectrum affecting a single pixel,
Pizel(z1,y1), in the image [3] (©) 2023 IEEE.

wavelength and provide data corresponding to this bandwidth. It is important to note
that camera sensors do not measure radiance at a precise wavelength directly but in-
stead measure within a bandwidth close to the desired wavelength and report the data
as OD for that bandwidth. Fig. 2.7b shows the ODs corresponding to various wave-
lengths within a single pixel of the image, denoted as Pixel(x1,y1) [3]. For the modeling
camera sensor, we consider the DJI P4-multispectral camera, as described in subsection
2.6.2 [114]. In this study, it is assumed that the bandwidth range of the multispectral
camera for each nominal wavelength is 10 nm, which is comparable to the bandwidth of
a hyperspectral camera (approximately 10 nm) [3].

2.7.3 Uncertainty assessment for NVDI

In this part, the uncertainty of NDVI is assessed using the type B approach based on
the definition of GUM when the input quantities are not correlated, as mentioned in
the subsection 2.7. In order to evaluate Equation (2.9), the uncertainty of u(NIR) and
u(R) will be computed as follows [3]:

OEw(N) Alw
u(W) = :
W) O w V3
Where Ay represents the tolerance in camera wavelengths and Eyy () denotes the area

under the fitted curve of the vegetation spectral reflectance, p()), which is evaluated
based on information captured by the camera at its nominal wavelength. Furthermore,

(2.12)
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Ew ()) is calculated as follows [3]:

A+AN
Ew()) = A _; p(V) N (2.13)

In practical scenarios, the camera measures OD. In this model, we hypothesize that an
ideal compensation method for atmospheric effects has been employed to estimate p(\)
values based on the solar radiance and measured OD [3].

2.7.4 Experimental Assessment

To quantify the uncertainty of NDVI using the proposed approach, a mathematical model
is required to evaluate the impact of measurement uncertainty in vegetation reflectance
for the R and NIR bands. For this purpose, a specific portion of the sample data cor-
responding to reflectance in the R and NIR bands, as shown in Fig. 2.4, is selected.
Using MATLAB tools, best-fitting curves with a RMSE of less than 0.001 are gener-
ated [3]. Due to the non-overlapping filter bands of the DJI P4-multispectral camera,
as mentioned in subsection 2.6.2, the model for assessing NDVI uncertainty is considered
uncorrelated and is evaluated based on Equation (2.9), [3]. According to details in Sub-
section 2.7.2, the camera sensor operates based on OD for each wavelength with a fixed
camera bandwidth. Therefore, in the model to evaluate OD, the reflected area under
the fitted curve based on the camera’s nominal wavelength in the R and NIR bands is
calculated according to Equation (2.13), considering a fixed bandwidth of 10 nm, [3]. To
assess the uncertainties u(NIR) and u(R), Equation (2.12) is used. The uncertainties
of u(NIR) and u(R) are determined as the derivative of the reflected area in each band,

TABLE 2.2: Dataset fresh leaves [3] (C) 2023 IEEE.

Data NDVI | Uncertainty NDVI
Sample 1 Fresh Leaf | 0.829 0.049
Sample 2 Fresh Leaf | 0.814 0.055
Sample 3 Fresh Leaf | 0.815 0.063
Sample 4 Fresh Leaf | 0.838 0.037
Sample 5 Fresh Leaf | 0.821 0.056
Sample 6 Fresh Leaf | 0.805 0.078
Sample 7 Fresh Leaf | 0.799 0.087
Sample 8 Fresh Leaf | 0.818 0.056
Sample 9 Fresh Leaf | 0.767 0.095
Sample 10 Fresh Leaf | 0.805 0.078
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TABLE 2.3: Dataset dry leaves [3] (C) 2023 IEEE.

Data NDVI | Uncertainty NDVI
Sample 1 Dry Leaf | 0.741 0.081
Sample 2 Dry Leaf | 0.742 0.070
Sample 3 Dry Leaf | 0.728 0.077
Sample 4 Dry Leaf | 0.771 0.057
Sample 5 Dry Leaf | 0.739 0.071
Sample 6 Dry Leaf | 0.697 0.098
Sample 7 Dry Leaf | 0.718 0.087
Sample 8 Dry Leaf | 0.742 0.063
Sample 9 Dry Leaf | 0.674 0.093
Sample 10 Dry Leaf | 0.697 0.098

multiplied by their tolerance wavelengths (based on camera specifications), and divided
by V3 (assuming a rectangular probability distribution for the nominal wavelength).
Subsequently, the uncertainty of NDVI measurements, denoted as u.(NDVI), is eval-
uated, Equation (2.9), [3]. To test the model, the reflectance quantities of 10 sample
leaves in the R and NIR wavelengths from the dataset were selected. Assuming that
the NDVI measurement follows a Gaussian distribution, a coverage factor of kK = 3 was
used to ensure a confidence level of 99.7%. The results of the NDVI measurements and
the corresponding expanded uncertainties for the experimental dataset, for both dry
and fresh vegetation, are presented in Tables 2.2 and 2.3, [3]. The findings indicate
that the nominal wavelength of the camera sensor is a significant source of uncertainty,
with values ranging from approximately 0.03 to 0.1 for both dry and fresh vegetation.
For instance, when the NDVI of a fresh leaf is determined to be 0.814, accounting for
its uncertainty of 0.055, the true estimate of the NDVI value for the fresh leaf can fall
within the range of (0.759,0.869), which overlaps with the corresponding range for the
dry leaf. Consequently, distinguishing between dry and fresh leaves based solely on the
given NDVT values is not precise. To address this issue, it is important to use a multi-
spectral camera with higher accuracy in terms of its nominal wavelength than the DJI
P4-multispectral camera [3]. Another assessment, using the same camera parameters,
was conducted with vegetation reflectance measurements obtained from the upper sur-
face of a green leaf sourced from a quaking aspen (Populus tremuloides) tree, as available
in [117]. The resultant NDVI was determined to be 0.766, with an associated uncertainty
of 0.069 [3]. It is important to emphasize that one of the main limitations of this model
is understanding how much uncertainty due to sensor bandwidth alone contributes to
the overall uncertainty. However, the results of this study provide a lower bound for
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assessing the uncertainty of NDVI measurement, thereby aiding in sensor selection [3].

2.8 A Workflow for Evaluating NDVI by Modeling Solar
Irradiance, Atmospheric Conditions, Leaf Reflectance,
and Camera Features While Considering the Effects of
Uncertainty Sources

This section presents a workflow for evaluating the uncertainty in NDVI measurements
by analyzing key factors influencing its accuracy. The study focuses on the impact of
atmospheric conditions on solar irradiation and vegetation reflectance, as captured by a
multispectral UAV camera operating in the R and NIR bands. Additionally, it accounts
for variability in the camera’s nominal wavelengths within these bands. The analysis is
structured across three atmospheric scenarios: dry-clear, humid-hazy, and a mixed con-
dition combining both. These scenarios are pivotal in assessing how atmospheric states
affect NDVI measurement accuracy. Variations in solar irradiance and the camera’s
SNR are also incorporated as significant factors influencing data quality. A detailed
sensitivity analysis is conducted using MCS, enabling the independent and combined
examination of each uncertainty source. This statistical approach quantifies the impact
of these factors on overall NDVI uncertainty. Results indicate that the primary con-
tributors to NDVI uncertainty are atmospheric conditions, particularly humidity and
haze, camera wavelength tolerance, and intrinsic variability in NDVI under different leaf
conditions (dry vs. fresh). These findings underscore the importance of accounting for
both environmental and instrumental factors in accurate NDVI assessments, crucial for
applications in RS and PA [4].

2.8.1 Proposed Workflow

As illustrated in Fig. 2.8, the workflow begins with modeling solar irradiation and its
interaction with the Earth’s atmosphere. The atmospheric transmission is considered in
two distinct scenarios: dry-clear and humid-hazy. These conditions significantly affect
the amount of solar radiation reaching the Earth’s surface, impacting the accuracy of
NDVI measurements. It is important to note that in this workflow, the effect of at-
mospheric transmission is considered only in the single path between the sun and the
ground, as the impact on the reflected light is deemed negligible. The workflow also
includes analyzing vegetation reflection, which varies in the health state of the plant
(dry and fresh). The camera sensor’s performance is a crucial factor in this analysis.
For this study, the variation in the nominal wavelength is assumed to have a specified
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and constant bandwidth of 20nm. The next step involves evaluating the incident OD
captured by the camera and converting it to digital format through 8-bit quantization.
During this digitization stage, the SNR of the camera is applied to ensure the reliability
of the captured data. The digital data obtained is then used to compute the NDVI
values.

Irrasr;)il:t;on_:> Transmission > Reflection ’{ Camera Sensor ]—)[ Digitalization ]—)‘ NDVI J———)
. h A .

A h A

—
—_—
IR

Dry Fresh Nominal Bandwidth Maximum Number

DncClear] Humidtiazy Vegetation Vegetation Wavelength Power of Bits

FiGURE 2.8: The proposed workflow for NDVI evaluation presented in this study includes
modeling solar irradiation, assessing atmospheric transmission under different conditions (such
as dry-clear and humid-hazy scenarios), analyzing vegetation reflection for both dry and fresh
leaf states, and evaluating the performance of the camera sensor along with the digitization
process [4].

2.8.1.1 Solar Irradiation

To model the Solar Spectral Irradiance (SSI), a publicly available dataset sourced from
measurements by the Spectral Irradiance Monitor (SIM) instrument is utilized [118].
The dataset comprises averaged measurements over a 24-hour period, covering a spec-
tral range from 200nm to 2400 nm, with a spectral resolution ranging from 2nm (for
wavelengths below 0.28 pm) to 45nm (for wavelengths above 0.4 pm). These measure-
ments were acquired at a mean solar distance of 1 Astronomical Unit (AU) and zero
relative line-of-sight velocity relative to the Sun. The absolute uncertainty of the SIM
instrument in measuring SSI is approximately 0.2 %. The dataset includes Julian day,
minimum wavelength, maximum wavelength, instrument mode, data version number,
irradiance value, irradiance uncertainty, and data quality. Fig. 2.9a illustrates the mea-
sured SSI averaged over a 24 h period. To meet the modeling objectives, spectral bands
around the R and NIR wavelengths of SSI are selected. The best-fitting curves for
these spectral bands were determined using a linear interpolation function, implemented
through MATLAB software tools. The resulting curves for the R and NIR bands are
depicted in Figs. 2.9b and 2.9¢ [118].

UNIVERSITA DEGLI STUDI
DEL SANNIO ecocveno




Chapter 2. Use of UAV for PA: Evaluating Uncertainty of NDVI Measurement 45

1
[

[\S}

—_
W

—_

o
n

Solar Irradiance [W/m?/nm]

Solar Irradiance [W/m?*nm]

(=}

500 1000 1500 2000 2500 500 550 600 650 700 750 800 850
Wavelength [nm] Wavelength [nm)]

(a) (B)

(=]

Solar Irradiance [W/m*nm]

e
9w o o= = N L R

700 750 800 850 900 950 1000 1050
Wavelength [nm)]

()

FIGURE 2.9: SSI measured by SIM at 1AU (24-Hour average) Z to Z. (a) SSI over the 200 nm
to 2400 nm, (b) SSI around the R band, (¢) SSI around the NIR band [4].

2.8.1.2 Atmosphere Transmission

To accurately model the behavior of solar radiation at the ground surface, it is essential
to consider the atmospheric influence on solar irradiance and estimate its impact for
inclusion in the modeling process. In the wavelength range below 2500 nm, incident
solar radiation undergoes several influences, including: (i) absorption by well-mixed
gases such as ozone (Ogz), oxygen (Og), methane (CHy), and carbon dioxide (COg);
(ii) absorption by water vapor; (iii) scattering by molecules; and (iv) scattering and
absorption by aerosols and hydrometeors [68]. Gas absorption can significantly alter
the received solar flux, with prominent effects at different wavelengths. In contrast,
aerosol absorption, considered a smoothly varying continuous function, typically results
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in limited absorption loss, varying from maritime aerosols to urban aerosols rich in
carbon. Maritime aerosols exhibit minimum absorption, while maximum absorption
is prevalent in urban aerosols containing significant carbon content [68]. Scattering,
whether from molecules or aerosols, modifies the incident solar flux. Molecular scattering
effects are significant in the visible/near-infrared (VNIR) range, diminishing at longer
wavelengths. Aerosol scattering has a noticeable impact on the VNIR/SWIR range,
particularly due to larger aerosol particle sizes [68]. Fig. 2.10a, created from the graph
mentioned in [68], illustrates atmospheric transmittance for several significant gaseous,
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FIGURE 2.10: (a) The atmospheric transmission in the spectral range of 500 nm to 1000 nm
is plotted for two conditions: dry-clear (red) and humid-hazy (blue). This plot illustrates the
contributions to the overall transmission from mixed gases, aerosols, and water vapor, with
data estimated from the referenced paper. Accordingly, (b) depicts the spectral wavelength
around the R band, while (c) shows the spectral wavelength around the NIR band [4].
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water vapor, and aerosol absorption features observed in the spectral region 400 nm to
2500 nm under two atmospheric conditions: dry-clear and humid-hazy. For modeling
atmospheric transmission, the spectral range 500 nm to 1000 nm is selected and shown
in Fig. 2.10a. In this spectral range, ozone exhibits weak absorption in the interval
500 nm to 700 nm, while a strong and narrow oxygen absorption line is present at 760 nm.
Water vapor absorption in the VNIR spectrum is characterized by numerous bands of
varying strengths and spectral widths. Two very weak absorption bands are present at
600 nm and 660 nm, while slightly stronger absorption and more significant bands are
located at 730 nm, 820 nm, and 910 nm. Additionally, a distinct and robust water vapor
absorption is observed at 940 nm. To achieve the modeling goals, spectral bands around
the R and NIR wavelengths of atmospheric transmission are chosen. Utilizing the linear
interpolation function with MATLAB software tools, the fitting curves for these selected
spectral bands are determined. The resulting curves for R and NIR can be observed in
Figs 2.10b and 2.10c [68].

2.8.1.3 Modeling Transmission of Solar Irradiance Through the Atmosphere
Conditions

The mathematical models derived from Sections 2.8.1.1 and 2.8.1.2 provide critical repre-
sentations of solar irradiance and atmospheric transmission, respectively. By integrating
these models, the study achieves a comprehensive understanding of the effects of atmo-
spheric conditions on solar irradiance transmission under varying scenarios, including
dry-clear and humid-hazy conditions. To account for these effects, the models for solar
irradiance and atmospheric transmission are multiplied for both the R and NIR bands
under dry-clear and humid-hazy conditions [119]. The models are sampled at specific
wavelengths with a resolution of 1nm. The resulting data points from these curves
are then multiplied element-wise. The outcomes of these calculations are illustrated in
Fig. 2.11, providing insights into the behavior of solar radiation as it propagates through
Earth’s atmospheric layers.

2.8.1.4 Vegetation Reflection Affected by Solar Irradiance Passed Through
Atmospheric Conditions

To assess the reflection of vegetation in the context of solar irradiance passing through the
atmosphere under both dry-clear and humid-hazy conditions, the mathematical curves
obtained from Subsection 2.8.1.3 (which represent solar irradiance modified by atmo-
spheric conditions) are multiplied with the vegetation reflectance curve derived from
Subsection 2.6.1. This multiplication provides an estimate of how solar irradiance and
atmospheric conditions impact vegetation reflection [119, 4]. The curves are sampled at
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FIGURE 2.11: Solar irradiation is influenced by two atmospheric conditions: dry-clear (indi-
cated in red) and humid-hazy (indicated in green). This impact is illustrated in (a) for the R
band and (b) for the NIR band [4].
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FIGURE 2.12: The spectral reflected irradiance of dry and fresh vegetation is influenced by
two atmospheric conditions—dry-clear and humid-hazy—across both (a) the R band and (b)
the NIR band [4].

specific wavelengths with a resolution of 1nm, and the corresponding data points from
the two curves are multiplied element-wise. The results of this estimation are presented
in Figure 2.12, which illustrates the reflection of both dry and fresh leaves under dry-
clear and humid-hazy atmospheric conditions for the R and NIR bands separately [4].
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2.8.1.5 Digitalization

In this study, the DJI P4-multispectral camera, as described in Subsection 2.6.2, is uti-
lized to capture and convert energy from real scenes into DNs for each pixel. The camera
operates with an 8-bit depth, providing a numerical range from 0 to 255. Accurate mod-
eling of the digitalization function necessitates knowledge of the maximum energy levels
in the real scenario [4]. To evaluate the maximum energy for the R and NIR bands, a
hypothetical empty scene on the Earth’s surface is considered. In this scenario, solar
irradiance, after passing through atmospheric conditions, is fully reflected by the bare
ground surface with no vegetation present [4]. For the R band, the maximum energy is
determined by analyzing the reflected irradiance within the wavelength range of 614 nm
to 686 nm, considering a sensor bandwidth of 20nm. The energy under the curve is
calculated by multiplying the solar irradiance, as detailed in Subsection 2.8.1.1, with
the atmospheric conditions (dry-clear or humid-hazy, evaluated separately) discussed in
Subsection 2.8.1.2. This results in a maximum energy density of 22.962 W m~? for the R
band [4]. A similar procedure is followed to ascertain the maximum energy for the NIR
band, considering a wavelength range from 794 nm to 886 nm with a bandwidth of 20 nm.
The maximum energy density for the NIR band is computed to be 16.908 W m~2 [4].

2.8.2 Sensitivity Assessment

Sensitivity analysis examines how changes in independent variables impact a specific de-
pendent variable under a set of defined assumptions. This study aims to understand how
variations in atmospheric conditions and instrumental parameters, by adjusting design
or operational settings, affect multispectral imaging in the measurement of NDVT [4]. To
achieve this, MCS are utilized to assess the uncertainties introduced by atmospheric con-
ditions and camera sensor characteristics. This approach helps to quantify the individual
contributions of these factors to the overall uncertainty in NDVI measurements [4].

2.8.2.1 Monte Carlo Simulation

The methodology for assessing uncertainty in this research follows the principles estab-
lished in the GUM [120], specifically utilizing the MCS approach [4]. The process MCS
method involves several key steps: (1) establishing a model equation for the measurand
based on the influence of individual parameters; (2) identifying the significant sources
of uncertainty; (3) determining the probability density functions corresponding to each
identified uncertainty source; (4) selecting the number of Monte Carlo trials; and (5)
calculating the results by applying the model equation to the measurand [121, 4]. MCS
employs random sampling to estimate the potential outcomes of uncertain events or
systems. By generating multiple scenarios with randomly assigned parameter values,
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MCS simulates the probability distribution of various outcomes. This method is par-
ticularly valuable for assessing risk and making informed decisions in the presence of
unpredictable factors [122, 4]. For multispectral images, as outlined in the workflow
depicted in Fig. 2.8, MCS is employed to estimate uncertainty and determine the distri-
bution of pixel values. MCS conducting through 100 observations, as shown in Fig. 2.13.
These simulations account for random variations in each influencing factor, including
solar irradiance, atmospheric conditions, and camera sensor characteristics separately,
as well as their combinations.

2.8.3 Results

The evaluation of NDVI measurement uncertainty involves analyzing the impact of pa-
rameter variations at each stage of the workflow, as illustrated in Fig. 2.8. This analysis
is divided into six components: (i) NDVI uncertainty relative to nominal wavelength, (ii)
NDVT uncertainty relative to the standard deviation of solar irradiance, (iii) NDVTI uncer-
tainty relative to camera SNR, (iv) NDVI uncertainty related to leaf state, (v) NDVI un-
certainty considering all sources of uncertainty, and (vi) comparison with an alternative
camera sensor. These assessments are performed on solar irradiance (discussed in sub-
section 2.8.1.1) under different atmospheric conditions (outlined in subsection 2.8.1.2),
utilizing datasets of both dry and fresh leaves (described in subsection 2.6.1), and em-
ploying a specific camera sensor (referenced in subsection 2.6.2). Detailed analyses and
results for each component are presented in the subsequent subsections [4].

Random Value of a
Parameter

Repeated 100

Model of Atmosphere
Times

and Sensor

S

NDVI
Uncertainty

FIGURE 2.13: Sensitivity analysis of the proposed workflow using MCS [4].
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2.8.3.1 NDVI Uncertainty vs Nominal Wavelength

In the experiment, one dried and one fresh leaf are selected. For MCS, a loop with
100 trials is employed, wherein the nominal wavelength is randomly changed based on
the nominal wavelength tolerance of the camera. This random value is selected from a
uniform distribution function. Then the energy of the multiplied curves, encompassing
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FIGURE 2.14: Box plots illustrating the effect of nominal wavelength as a source of uncertainty
on NDVT values for atmosphere conditions: (I) Dry-clear, (II) Humid-hazy, and (IIT) Mixed,
considering both DL and FL [4].

TABLE 2.4: Statistical parameters MED, first and third Quartiles (Q1, Q3), IQR and distance
of first quartiles of fresh leaf and third quartiles of dry leaf when the effect of nominal wave-
length as an uncertainty source on NDVI values for different LS, and ATMC is evaluated [4].

LS ATMC  MED QI Q3 IQR Qlp-Q3p
Humid-Hazy 0.829 0.817 0.836 0.019 0.049
Fresh  Dry-Clear  0.799 0.785 0.813 0.028 0.054
Mixed 0.812 0.799 0.824 0.025 0.049
Humid-Hazy 0.750 0.742 0.768 0.026 0.049
Dry  Dry-Clear 0.719 0.703 0.731 0.028 0.054
Mixed 0.733 0.714 0.750 0.036 0.049
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(i) solar irradiance without considering its standard deviation, (ii) atmospheric trans-
mission, and (iii) leaf reflection in both the R and NIR spectra, as mentioned in sub-
section 2.8.1.4, is assessed [4]. After evaluating the energy, a quantization function for
8-bits, considering the maximum energy evaluated separately in R and NIR as mentioned
in subsection 2.8.1.5, is applied. Subsequently, an unsigned integer value is computed
for each wavelength in R and NIR. Then NDVI value is calculated using these two
integers, based on Equation (2.4). Out of the 100 trials, 100 NDVI values are used to
evaluate the effect of the uncertainty source on NDVI values [4]. To precisely investi-
gate the degree of this effect, it is imperative to determine the distribution of NDVI
values. The chi-square test is applied to the NDVI values, revealing that NDVI does
not follow a Gaussian distribution. Moreover, the NDVTI values in dry and fresh leaves
are independent. As NDVI values are independent and do not conform to a Gaussian
distribution, the Wilcoxon Rank Sum Test, also recognized as the Mann-Whitney U test,
is employed. This non-parametric test, which does not assume known distributions and
avoids dealing with parameters, is utilized to assess the extent of overlap in NDVI val-
ues, determining whether NDVI values for distinct leaves are likely to originate from the
same population [4]. In this test, the Null Hypothesis (HO) is that the two input data
are samples from the same distribution with identical medians, while the Alternative
Hypothesis (H1) assumes they are not. Rejecting the HO implies evidence of a shift in
one distribution relative to the other and provides evidence that the medians of the two
populations differ. Moreover, the p-value indicates the probability of observing the data
if the H1 is true [4]. The outcome of this test is depicted in Fig. 2.14 for each separate
air condition. The resultant p-values are significantly below 0.0001 (p < 0.0001), so
to report them, 4 asterisks are used to denote the level of significance. This level of
significance implies strong evidence to reject the HO in favor of the H1. Therefore, there
is a difference between dry and fresh leaves under different conditions. With a more
reliable and trustworthy multispectral camera and data about leaf chemical composition
and species, it is possible to distinguish leaves’ status [4]. Table 2.4 presents the conclu-
sive outcomes of the conducted evaluation, incorporating the MED NDVI along with its
associated First Quartile (Q1), Third Quartile (Q3), and Interquartile (IQR) for Leaf
State (LS) in both dry and fresh leaves under various Atmosphere Conditions (ATMC).
These conditions include humid-hazy, dry-clear, and a mix of air conditions. The vari-
ability of the NDVI with respect to fresh leaves, assessed through the IQR, is determined
to be 0.028, while for dry leaves, it is measured at 0.036. Despite considering nominal
wavelength as a potential source of uncertainty, these values exhibit low magnitudes,
indicative of the stability of NDVI values. Also, the table includes the distance between
Q1 of the fresh leaf (Q1r) and Q3 of the dry leaf (Q3p) in the same air condition, pro-
viding information about the ability to distinguish between the two leaf conditions [4].
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In the context of distinguishing between dry and fresh leaves, the MED of fresh leaves
consistently surpasses that of dry leaves. Consequently, the assessment of the distance
of the leaf condition involves quantifying between Q1r and @Q3p. A greater distance in-
dicates a higher ability to distinguish the leaf under different conditions based on NDVI
values and setting a threshold [4]. By setting a threshold of NDVI value around 0.775,
it is possible to distinguish between dry and fresh leaves under various air conditions.
However, in a dry-clear atmosphere, the threshold can be below 0.775, while in a humid-
hazy atmosphere, it can be above 0.775. Therefore, the choice of the threshold depends
on the atmospheric conditions [4]. Moreover, the distance, Q1p — Q3p, in different air
conditions shows the highest value in dry-clear atmospheric conditions, which is 0.054,
than in humid-hazy and mixed air conditions, which are 0.049. Therefore, the ability to
differentiate between leaf states in a dry atmosphere is more feasible [4].

2.8.3.2 NDVI Uncertainty vs Solar Irradiance Standard Deviation

For this test, the same procedure as mentioned in subsection 2.8.3.1 is repeated. How-
ever, the difference lies in the initial step where data regarding the uncertainty of the
solar irradiance instrument for each wavelength within the dataset mentioned in [118]
is added, along with white Gaussian noise, to the solar irradiance curve. Furthermore,
the nominal wavelength is fixed to match the camera’s nominal wavelength in R and
NIR spectra [4]. The outcome of the Wilcoxon Rank Sum Test on the NDVI values is
presented in the box plot shown in Fig. 2.15. The obtained p-value is markedly below
0.0001 (p < 0.0001), which signifies robust evidence for rejecting the HO in favor of the
H1. Furthermore, the absence of any overlap between the boxes in Fig. 2.15 indicates
the feasibility of distinguishing between dry and fresh leaves under various conditions [4].
The conclusive outcomes of the conducted assessment are presented in Table 2.5. The
IQR values indicate the NDVI variability for fresh and dry leaves as 0.039 and 0.047,
respectively. Despite accounting for the standard deviation of solar irradiance as a po-
tential source of uncertainty, these variation values exhibit low magnitudes, signifying
the stability of NDVI values [4]. Moreover, the table incorporates the Q1p to Q3p
distance in the same air condition, providing insights into the capability to differenti-
ate between the two leaf conditions. By establishing a threshold for the NDVI value
within the range of 0.777 to 0.787, it becomes feasible to discern between dry and fresh
leaves under various air conditions [4]. In a dry-clear atmosphere, the threshold can
shift slightly downward, and in a humid-hazy atmosphere, it can shift slightly upward.
Furthermore, the Q1r — Q3p distance across different air conditions reveals a higher
magnitude in dry-clear atmospheric conditions (0.076) compared to humid-hazy (0.068)
and mixed air conditions (0.029). As a result, the practicality of distinguishing between
leaf states in a dry atmosphere is enhanced [4].
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FI1GURE 2.15: Box plots illustrating the effect of the variability in solar irradiance measurement
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hazy, and (IIT) Mixed, considering both DL and FL [4].

TABLE 2.5: Statistical parameters MED, first and third Quartiles (Q1, Q3), IQR and distance
of first quartiles of fresh leaf and third quartiles of dry leaf when the effect of solar irradiance
standard deviation as an uncertainty source on NDVI values for different LS, and ATMC is
evaluated [4].

LS ATMC  MED QI Q3 IQR Qlp-Q3p
Humid-Hazy 0.836 0.836 0.838 0.002 0.068
Fresh  Dry-Clear  0.797 0.797 0.798 0.001 0.076
Mixed 0.809 0.797 0.836 0.039 0.029
Humid-Hazy 0.768 0.750 0.768 0.018 0.068
Dry  Dry-Clear 0.721 0.719 0.721 0.002 0.076
Mixed 0.737 0.721 0.768 0.047 0.029

2.8.3.3 NDVI Uncertainty vs Camera SNR

The signal in a pixel is quantified by the total number of detected photoelectrons, and a
higher quantum efficiency or larger pixel size yields an increased signal due to a higher
count of photoelectrons [123]. The SNR measures the relationship between the useful
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signal and unwanted background noise within a pixel [4]. In various embedded vision
applications (crop detection), particularly those involving edge-based processing with
AT or ML algorithms analyzing processed images for intelligent decision-making, a high
SNR is essential to deliver detailed and accurate image outputs [124]. The SNR varies
depending on the device, and based on literature reviews, an SNR, range from 40dB to
60 dB has been measured for multispectral cameras [125, 124]. This range is estimated
to be suitable for maintaining a balance between signal strength and noise levels [4].
In this test, the same procedure as mentioned in subsection 2.8.3.1 is repeated, using a
fixed camera’s nominal wavelength in R and NIR. During the quantization function step,
the SNR value, along with an additive white Gaussian noise, is incorporated into the
quantization function, as mentioned in subsection 2.8.1.5, for the conversion of analog
data to digital. The SNR value is initialized at 40 dB and incremented by 10dB in each
iteration of Monte Carlo analysis until reaching 60dB [4]. The results of the Wilcoxon
Rank Sum Test on the NDVI values, are depicted in the box plots shown in Fig.2.16
for SNR values of 40dB, 50dB, and 60dB, respectively. These box plots indicate the
absence of any overlap between the boxes [4]. The computed p-value, significantly below
0.0001, provides robust evidence for rejecting the HO in favor of the H1. This outcome
thereby enables the differentiation of leaf state under varying air conditions [4]. Table 2.6
presents the definitive outcomes of the conducted assessment for SNR values of 40dB,
50dB, and 60dB. The IQR for NDVI variability in fresh leaves is 0.039, and for dry
leaves, it is 0.047. The analysis indicates that different SNR values do not significantly
influence the degree of NDVI variation. Considering camera SNR as a potential source
of uncertainty, the variation of NDVI values displays low magnitudes, indicative of the
stability of NDVTI values [4]. By establishing a threshold of NDVI value between 0.770
and 0.790, it becomes feasible to distinguish between dry and fresh leaves under various
air conditions. In dry conditions, the threshold can shift slightly down; in humid-hazy
conditions, it can shift slightly up [4]. In addition, the distance, Q1 — @Q3p, in different
air conditions reveals a higher magnitude in dry-clear atmospheric conditions (0.076)
compared to humid-hazy (0.068) and mixed air conditions (0.029). Importantly, varying
SNR values do not impact the magnitude of this distance. Also, the practicality of
distinguishing between leaf states in a dry atmosphere remains high [4].
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FIGURE 2.16: Box plots illustrating the influence of the camera sensor under three different
SNR conditions: (a) SNR = 40dB, (b) SNR = 50dB, and (¢) SNR = 60dB, serving as
uncertainty factors on NDVI values. The plot considers various atmospheric conditions and

leaf states, including: ADDL, ADFL, AHDL, AHFL, AMDL, and AMFL [4].
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TABLE 2.6: Statistical parameters MED, first and third Quartiles (Q1, Q3), IQR and distance
of first quartiles of fresh leaf and third quartiles of dry leaf when the effect of camera SNR at
40dB, 50dB, and 60 dB as an uncertainty source on NDVTI values for different LS, and ATMC
is evaluated [4].

LS ATMC  SNR[dB] MED Q1 Q3 IQR Qlr-Q3p
40 0.836  0.836 0.836 0.000 0.068
Humid-Hazy 50 0.836  0.836 0.836 0.000 0.068
60 0.836  0.836 0.836 0.000 0.068
40 0.797 0.797 0.797 0.000 0.076
Fresh  Dry-Clear 50 0.797 0.797 0.797 0.000 0.076
60 0.797 0.797 0.797 0.000 0.076
40 0.817 0.797 0.836 0.039 0.029
Mixed 50 0.817 0.797 0.836 0.039 0.029
60 0.817 0.797 0.836 0.039 0.029
40 0.768 0.750 0.768 0.018 0.068
Humid-Hazy 50 0.768 0.768 0.768 0.000 0.068
60 0.768 0.768 0.768 0.000 0.068
40 0.721 0.721 0.721 0.000 0.076
Dry  Dry-Clear 50 0.721 0.721 0.721 0.000 0.076
60 0.721 0.721 0.721 0.000 0.076
40 0.735 0.721 0.768 0.047 0.029
Mixed 50 0.745 0.721 0.768 0.047 0.029
60 0.745 0.721 0.768 0.047 0.029

2.8.3.4 NDVI Uncertainty vs Leave State

In this sensitivity analysis, the uncertainty due to the binary model of the leaf state
(fresh or dry) is assessed. Therefore, for the Monte Carlo analysis, a set of 49 leaf sam-
ples is selected for each leaf state. The sample size must meet a minimum requirement
of 30, as certain statistical tests, such as the T-square test, are not applicable for sample
sizes below this number. Consequently, 49 leaf samples are chosen, as this quantity is
readily available within the dataset [113, 4]. By maintaining a fixed nominal wavelength
equivalent to the camera’s nominal wavelength in the R and NIR spectra, the identical
procedure outlined in subsection 2.8.3.1 is utilized [4]. The result of the Wilcoxon Rank
Sum Test is employed to elucidate the impact of this uncertainty source on NDVI values
in detail, as depicted in the box plots presented in Fig. 2.17. The derived p-value, notably
below 0.0001, provides robust evidence for rejecting the HO in favor of the H1. Moreover,
the absence of any overlap between the boxes, in Fig. 2.17, emphasizes the feasibility of
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discriminating between dry and fresh leaves under varying air conditions [4]. Table 2.7
summarizes the conclusive results of the conducted assessment. The IQR values for the
NDVI variability in fresh leaves and dry leaves are 0.032 and 0.046, respectively. These
values, considering the distribution of measured leave values in dry and fresh states with
respect to the NDVI measurement as a potential source of uncertainty, demonstrate low
magnitudes, suggesting the low variability of the NDVI values [4]. In the context of
distinguishing between dry and fresh leaves, setting a threshold around 0.790 for the
NDVI value makes it possible to differentiate between them under various air condi-
tions. However, in a dry atmosphere, this threshold can move a bit downward, and in
a humid atmosphere, it can move a bit upward. Therefore, selecting the threshold also
depends on atmospheric conditions. Moreover, the Q1r — (Q3p distance in different air
conditions reveals a higher magnitude in dry-clear atmospheric conditions (0.057) com-
pared to humid-hazy (0.042) and mixed air conditions (0.040). Hence, the feasibility of
differentiating between leaf states in a dry atmosphere is increased [4].
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FIGURE 2.17: Box plots illustrating the effect of the variability of NDVI values as a source of
uncertainty on NDVI values for atmosphere conditions: (I) Dry-clear, (II) Humid-hazy, and
(IIT) Mixed, considering both DL and FL [4].
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TABLE 2.7: Statistical parameters MED, first and third Quartiles (Q1, Q3), IQR and distance
of first quartiles of fresh leaf and third quartiles of dry leaf when the effect of the variability
of NDVI values as an uncertainty source on NDVI values for different LS, and ATMC is
evaluated [4].

No./ LS ATMC  MED QI Q3 IQR Qlp-Q3p
Humid-Hazy 0.843 0.830 0.854 0.024 0.042
49/Fresh Leaf  Dry-Clear  0.818 0.802 0.826 0.024 0.057
Mixed 0.827 0.813 0.845 0.032 0.040
Humid-Hazy 0.770 0.758 0.788 0.030 0.042
49/Dry Leaf ~ Dry-Clear  0.729 0.714 0.745 0.031 0.057
Mixed 0.752  0.727 0.773 0.046 0.040

2.8.3.5 NDVI Uncertainty vs All Uncertainty Sources

In this section, all the uncertainty sources, including variations in solar irradiance stan-
dard deviation, camera SNR, camera nominal wavelength, and the variability of the
measurand within each considered leaf state, are applied to the dataset for the assess-
ment of NDVI uncertainty. In the Monte Carlo analysis, a dataset of 49 leaf samples
is selected. Solar irradiance standard uncertainty, modeled by a Gaussian distribution
function, and SIM instrument’s uncertainty, are applied to the solar irradiance curve
before its utilization in energy evaluation. Variations in nominal wavelength, introduced
through a Uniform distribution function, are applied [4]. The SNR value is initialized
and incremented in the same procedure as mentioned in subsection 2.8.3.3. Following
this, the resulting energy is calculated using the same procedure as that used in subsec-
tion 2.8.3.1. The Wilcoxon Rank Sum Test results to elucidate the extent of the effect
of these uncertainty sources on NDVI values in detail are portrayed in the box plots
presented in Fig. 2.18 for SNR values of 40dB, 50dB, and 60dB, respectively. These
box plots indicate the absence of overlap between the boxes. The computed p-value,
significantly below 0.0001, provides robust evidence for rejecting the HO in favor of the
H1. This outcome thereby enables the differentiation of leaf state under varying air
conditions [4]. Table 2.8 summarizes the conclusive results of the evaluation with SNR
values of 40dB, 50dB, and 60dB. The IQR for the NDVI variability in fresh leaves
is 0.043, and for dry leaves, it is 0.053. Different SNR values have a minor impact on
the variability. These NDVI variability values show low magnitudes and suggest the
stability of NDVI values [4]. Additionally, setting a threshold for the NDVI value just
around 0.790 makes it challenging but possible to distinguish between dry and fresh
leaves under various air conditions. In a dry-clear atmosphere, the threshold can shift
down a bit, while in a humid-hazy atmosphere, it can shift up a bit. Furthermore, the
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distance, Q1r — @3 p, in various air conditions, reveals a higher magnitude in dry-clear
atmospheric conditions (0.047) than in humid-hazy and mixed air conditions, which are
0.040 and different SNR values have a negligible effect on this distance. Therefore, the
feasibility of differentiating between leaf states in a dry atmosphere is higher [4].
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FIGURE 2.18: Box plots illustrating the effect of all uncertainty sources under three different
SNR conditions: (a) SNR = 40dB, (b) SNR = 50dB, and (c) SNR = 60dB, serving as
uncertainty factors on NDVI values. The plot considers various atmospheric conditions and
leaf states, including: ADDL, ADFL, AHDL, AHFL, AMDL, and AMFL [4].
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TABLE 2.8: Statistical parameters MED, first and third Quartiles (Q1, Q3), IQR and distance
of first quartiles of fresh leaf and third quartiles of dry leaf when the effect of the combination
of all uncertainty sources on NDVI values for different LS, and ATMC is evaluated [4].

No./ LS ATMC SNR [dB] MED QI Q3 IQR Qlr-Q3p

40 0.840 0.825 0.856 0.031 0.035

Humid-Hazy 50 0.842 0.822 0.854 0.032 0.039

60 0.843 0.820 0.851 0.031 0.040

40 0.815 0.796 0.831 0.035 0.036

49/Fresh  Dry-Clear 50 0.819 0.791 0.829 0.038 0.041

60 0.813 0.797 0.832 0.035 0.047

40 0.829 0.808 0.843 0.035 0.038

Mixed 50 0.825 0.800 0.843 0.043 0.030
60 0.828 0.810 0.842 0.032 0.040

40 0.762 0.739 0.792 0.053 0.035

Humid-Hazy 50 0.767 0.739 0.783 0.044 0.039
60 0.767 0.742 0.782 0.040 0.040

40 0.737 0.704 0.755 0.051 0.036

49/Dry Dry-Clear 50 0.730 0.697 0.750 0.053 0.041
60 0.731 0.699 0.751 0.052 0.047

40 0.743 0.724 0.768 0.044 0.038

Mixed 50 0.748 0.720 0.771 0.051 0.030

60 0.748 0.718 0.770 0.052 0.040

2.8.4 Comparison with Another Camera Sensor

The proposed workflow has been evaluated considering another multispectral sensor
available in the market, the AQ600 multispectral camera [126], composed of five spec-
tral channels of 3.2 M pixels each, along with one 12.3 M pixel RGB channel. It features
a sapphire optical window, a large aperture, low distortion, broad-spectrum transmis-
sion, and an all-glass lens. The AQ600 offers advantages such as fast imaging speed, high
resolution, and accurate image quality, making it more suitable for Vertical Take-Off and
Landing (VTOL) and fixed-wing UAVs [4]. The filters used in the camera have specific
wavelength ranges, R: 660 nm + 22nm, and NIR: 840nm + 30 nm. Its resolution is 12
bit for the multispectral camera, and 8 bit for the RGB channels [4]. In the valuation,
the integration of all uncertainty sources, following the procedure outlined in subsec-
tion 2.8.3.5 with 12 bit quantization, is applied. Subsequently, the Wilcoxon Rank Sum
Test is conducted to thoroughly examine the NDVI values, with detailed portrayal in the
box plots presented in Fig. 2.19 for SNR values of 40 dB, 50 dB, and 60 dB, respectively.
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The computed p-value, significantly below 0.0001, provides robust evidence for rejecting
the HO in favor of the H1. This outcome facilitates the differentiation of leaf state under
varying air conditions [4] Table 2.9 presents the comprehensive findings of the evaluation
across SNR values of 40dB, 50dB, and 60dB. The IQR for NDVI variability in fresh
leaves is 0.038, and for dry leaves, it is 0.059. Minor fluctuations in NDVI variability are
observed with varying SNR values, indicating the stability of NDVI measurements [4].
Moreover, the difference between Q1r and Q3 p within the same atmospheric condition
is slightly higher in dry-clear atmospheric conditions (0.050) compared to humid-hazy
and mixed air conditions, which measure 0.047 and 0.048. Different SNR values have
a negligible impact on this difference. Establishing a threshold for the NDVI value
around 0.790 enables the distinction between dry and fresh leaves under diverse air con-
ditions. In dry-clear atmospheres, the threshold may shift downward slightly, while in
humid-hazy atmospheres, it may shift upward marginally [4]. In comparing the DJI
P4-multispectral and AQG600, despite differences in their quantization level, number of
bits, and filter bands in R and NIR, it is feasible to differentiate between leaf states and
the NDVI values exhibit changes on the order of a few thousandths, indicating that the
cameras’ features contribute less to the overall uncertainty compared to other sources [4].
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FIGURE 2.19: Box plots illustrating the effect of all uncertainty sources by using the AQ600
camera features under three different SNR conditions: (a) SNR = 40dB, (b) SNR = 50dB, and
(¢) SNR = 60dB, serving as uncertainty factors on NDVI values. The plot considers various
atmospheric conditions and leaf states, including: ADDL, ADFL, AHDL, AHFL, AMDL, and
AMFL [4].
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TABLE 2.9: Statistical parameters MED, first and third Quartiles (Q1, Q3), IQR, and distance
of first quartiles of fresh leaf and third quartiles of dry leaf when the effect of the combination
of all uncertainty sources by using the AQ600 camera’s features on NDVI values for different
LS, and ATMC is evaluated [4].

No./ LS ATMC  SNR[dB] MED Q1 Q3 IQR Qlr-Q3p
40 0842 0.824 0.857 0.033 0.041
Humid-Hazy 50 0.838 0.827 0.850 0.023 0.044
60 0.840 0.824 0.852 0.028 0.047
40 0821 0.802 0.834 0.032 0.047
49/Fresh  Dry-Clear 50 0.819 0.797 0.831 0.034 0.050
60 0.819 0.802 0.833 0.031 0.045
40 0.829 0.809 0.847 0.038 0.037
Mixed 50 0.827 0.806 0.843 0.037  0.034
60 0831 0.814 0.841 0.027  0.048
40 0.763  0.741 0.783 0.042 0.041
Humid-Hazy 50 0.760 0.739 0.783 0.044 0.044
60 0.763 0.748 0.777 0.029 0.047
40 0.728 0.710 0.755 0.045 0.047

49/Dry Dry-Clear 50 0.729 0.704 0.747 0.043 0.050
60 0.733 0.706 0.757 0.051 0.045

40 0.752 0.722 0.772 0.05 0.037

Mixed 50 0.745 0.713 0.772 0.059 0.034

60 0.751 0.725 0.766 0.041 0.048

2.8.5 Discussion

Looking at the boxplot reported in Figs. 2.14-2.19, it is possible to observe that, when
only one of the considered uncertainty sources is considered, the median values referring
to the same leaf state and in the same atmospheric conditions are distributed around
similar values. On the contrary, the median values referring to the same leaf state show
a significant change when the atmospheric conditions change. This demonstrates that
the atmospheric conditions introduce a bias in the NDVI measurements [4]. In PA appli-
cations, it is often important to classify the state of the crop. In this research, for each
considered uncertainty source, after having determined the distribution of the NDVI val-
ues, its effect on a possible classification has been evaluated. This helps anticipate the
accuracy of a classifier working on the measurements affected by uncertainty, according
to the proposed workflow [4]. The classification must consider the bias introduced by
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the atmospheric conditions, provided that they are stable throughout the survey. There-
fore, the threshold for the classification should be defined depending on the atmospheric
conditions [4]. The bias introduced by the atmospheric effects could be corrected ei-
ther by identifying the model of the atmospheric transmission or using a radiometric
compensation [127]. This correction is needed when the analysis is carried out on data
acquired in different weather and light conditions, such as in the case of multi-temporal
comparison [128], or when parts of the field are occluded by clouds or shadows [129, 91].
The atmospheric correction allows for minimizing the bias and therefore the median val-
ues of the samples, even when they are obtained in different environmental conditions.
This will allow a classifier threshold to be set independently on the atmospheric condi-
tions [4]. Several methods can be used to compensate for atmospheric effects. The DOS
method identifies regions within an image with minimal reflectance, typically shadowed
areas [91] or water bodies, and subtracts their radiance values to diminish cloud and at-
mospheric contributions. Advanced radiative transfer models, exemplified by MODerate
resolution atmospheric TRANsmission (MODTRAN) [130], facilitate precise correction
by simulating the complex interactions of electromagnetic radiation with atmospheric
components. Additionally, reference targets strategically positioned in the scene, such
as Lambertian sheets [131], and empirical line compensation methodologies establish
correlations between sensor readings and ground-truth reflectance values, enabling ac-
curate adjustment of sensor data [132, 133]. Spectral matching techniques further refine
calibration efforts by ensuring consistency across different sensors [133, 4]. Even though
using radiometric compensation may mitigate the variation of solar irradiance, it has
some limitations. Firstly, some radiometric compensation methods are not cost-effective
for UAV applications, such as the physical-based methods [55] which require the use
of several sensors to estimate the atmospheric conditions. Secondly, the empirical lin-
ear methods assume a linear behavior of the multispectral camera sensors, which is
not always valid [132], and usually, the compensation is performed once during a flight
mission with reference targets, thus they are not able to follow possible changes of the
atmospheric conditions [132, 4].

2.9 Extending the Workflow with a Radiometric Compen-
sation Step to Mitigate the Effect of Atmospheric Con-
ditions on NDVI Measurement

Radiometry, a key aspect of analyzing optical sensor data, involves the measurement of
electromagnetic radiation across various wavelengths. In PA, UAVs and other platforms,
whether at high or low altitudes, capture the solar radiation reflected from the Earth’s
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FIGURE 2.20: Basic radiance diagram for an optical sensor on a low-altitude platform [9].

surface. However, this radiation is modified along its path by processes such as absorp-
tion, scattering, and reflection before it reaches the sensor. Fig. 2.20 provides a visual
representation of how incident solar radiation interacts with atmospheric and surface
elements before being recorded by the optical sensor [9]. As a result, the recorded DN
values do not directly reflect the surface’s true radiance due to factors including sensor
characteristics, camera settings, vignetting, solar angle, and atmospheric conditions like
fog or aerosols. To approximately correct these variations, radiometric compensation
is essential. Radiometric compensation refers to the process of correcting or adjusting
images or measurements to account for variations in lighting, sensor characteristics, or
environmental factors, ensuring that the observed radiometric values accurately repre-
sent the true properties of the scene or object being imaged. This process is crucial
in scenarios where consistent radiometric information is needed across different images
or over time, such as in Augmented Reality (AR), computer vision, or remote sensing.
Radiometric compensation is conducted before any further image processing to maintain
data integrity. One key aspect of radiometric compensation is illumination compen-
sation, which addresses variability in lighting conditions that can cause differences in the
perceived brightness and color of images. This compensation often relies on reflectance
models that adjust radiance values based on the lighting conditions at the time of im-
age capture. Another critical component is the correction of sensor characteristics,
such as sensor non-uniformity, which can lead to inconsistencies in the captured image
due to pixel-to-pixel variations. Additionally, vignetting correction is performed to
counteract the reduction in image brightness towards the edges caused by optical system
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limitations. Temporal compensation is also essential, especially in applications like
remote sensing, where the radiometric properties of the scene may change over time due
to factors like weather, solar angle, or sensor aging. This type of compensation ensures
that the radiometric properties remain consistent across a sequence of images, maintain-
ing image quality over time. Lastly, geometric compensation accounts for variations
in viewing geometry, ensuring accurate radiometric values regardless of the angle or
perspective from which the image is captured. To perform radiometric correction, the
following fundamental steps are required.

1.

Sensor Correction:

- Determination of Sensor Response: The sensor’s response to incident ra-
diance is characterized, often under controlled laboratory conditions. This char-
acterization involves quantifying the sensor’s spectral sensitivity across different
wavelengths, which is fundamental for accurate radiometric measurements.

- Non-Uniformity Correction: Correction procedures include correcting for
pixel-to-pixel variations in sensor array responses, which may arise due to manu-
facturing inconsistencies or aging of the sensor components.

. Dark Signal Correction: Every sensor inherently records a baseline signal,

known as the dark current or bias, even in the absence of incident radiation. This
baseline must be subtracted from the raw data to isolate the true radiometric signal
corresponding to the observed scene.

. Gain and Offset Correction: The relationship between the recorded DN values

and the incident radiance is typically modeled as a linear function characterized
by a gain (slope) and an offset (intercept). Radiometric correction involves deter-
mining these parameters to convert the DNs into radiance units accurately.

. Atmospheric Correction: The atmosphere introduces various distortions to the

radiative signal due to scattering, absorption, and emission processes. Accurate
radiometric correction requires correcting these atmospheric effects, which may be
achieved using atmospheric radiative transfer models or empirical ground-based
measurements.

. Conversion to Physical Quantities: The corrected DNs are converted into ra-

diometric units such as radiance (W-m~2-sr~!-nm~1!) or reflectance (dimensionless

ratio of reflected to incident radiation). This conversion enables the interpretation
of the data in physically meaningful terms.
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6. Validation: The accuracy of the corrected radiometric data is validated through
comparison with ground-truth measurements or by using well-characterized refer-
ence targets. This step is crucial for ensuring that the data meets the required
standards for scientific analysis.

2.9.1 Reflectance Target, Lambertian Surface

To obtain a ground truth measurement for compensating the camera of a UAV, a ref-
erence target is commonly used. A reflectance target is a surface or object with known
reflectance properties. These targets are designed to have stable and uniform reflectance
across different wavelengths, making them ideal for compensating and validating the
radiometric response of imaging systems. Reflectance targets can be Lambertian or
nearly Lambertian, meaning they reflect light diffusely and uniformly in all directions.
A Lambertian surface is a theoretical concept. This ideal surface is named after Johann
Heinrich Lambert, who first described the concept in the 18th century. The Lamber-
tian surface model is a crucial concept in radiometry and remote sensing, serving as
a baseline for accurate radiometric compensation, understanding, and interpreting the
behavior of real-world surfaces in the context of light reflection and measurement. The
characteristics of a Lambertian surface are as follows:

1. Uniform Reflection: A Lambertian surface reflects incoming radiation equally in
all directions. This means that the intensity of the reflected radiation is consistent
regardless of the angle from which it is observed, Fig. 2.21 [10].

2. Diffuse Reflection: Unlike specular surfaces that reflect light in a specific direc-
tion (like a mirror), Lambertian surfaces exhibit diffuse reflection. The reflected
light is scattered uniformly over a hemisphere, Fig. 2.21 [10].

3. Lambert’s Cosine Law: The radiance (R) of a Lambertian surface is propor-
tional to the incident irradiance (L) and is given by Lambert’s cosine law:
L - cos(0
o Locos(6)
™
where 6 is the angle of incidence, and 7 normalizes the reflection over the hemi-
sphere.

4. Idealization: True Lambertian surfaces do not exist in nature, but many real-
world surfaces approximate this idealized model. Examples include matte paints
and certain rough, non-metallic surfaces.
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Reflection

FIGURE 2.21: Uniform and diffuse reflection on a Lambertian surface [10].

5. Applications: Lambertian surfaces are used as reference models in radiometric
compensation and interpretation of remote sensing data. They provide a stan-
dard for comparing the reflectance characteristics of different materials and help
in correcting for variations caused by real-world surface properties.

6. Radiometric Compensation: In remote sensing, understanding Lambertian re-
flectance helps in radiometric compensating sensors and correcting data to ensure
accurate measurement of surface properties. By comparing observed data with the
Lambertian model, scientists can adjust for the effects of non-ideal surfaces and
atmospheric conditions.

7. Practical Examples: Although perfect Lambertian surfaces do not exist, mate-
rials like matte white paint or certain types of soil can closely approximate Lam-
bertian reflectance.

2.9.2 Applying Atmospheric Radiometric Compensation to the NDVI
Measurement

To address the challenge posed by variability in the environmental and lighting conditions
under which each image is captured, a standardized procedure is essential for system-
atic radiometric compensation to generate multispectral images with unit reflectance.
This process is crucial for the accurate calculation of VIs. This study focuses on imple-
menting a series of radiometric compensation models for multispectral images obtained
under differing weather and illumination scenarios. The procedure begins by modify-
ing the spectral reflectance by using a single Lambertian black foil and then progresses
to modeling multiple points (six points) on Permaflect sheets with different reflectance
percentages.
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2.9.2.1 Radiometric Compensation by Using a Single Lambertian Black Foil
for UAV Multispectral Imaging

In this analysis, a radiometric compensation model is developed using a Lambertian
black foil spectral reflectance curve obtained from the datasheet, which is available at
[11]. The spectral range of the sheet’s reflectance is from 100 nm to 1400 nm, as depicted
in Fig. 2.22. Then, using the MATLAB tool, the red channel of Fig. 2.22 is selected,
and a mask is applied, as illustrated in Fig. 2.23. The best-fitted curve obtained from
the linear interpolation of the spectral reflectance in Fig. 2.23 is evaluated, and its R
and NIR bands are separated as shown in Fig. 2.24. Following the compensated curve
derived from the red band, as shown in Fig. 2.24b, it is multiplied element-wise by a
curve that incorporates solar irradiance, atmospheric humidity conditions, and fresh leaf
reflection, as described in subsection 2.8.1.4. The result of the radiometric correction
on the fresh vegetation in R band is evaluated and shown in Fig. 2.25. It is important
to mention that, for an accurate compensating model, it is required to use multiple
reference Lambertian sheets, which are used and described in detail in the following
subsection.

" /

Hemispherical Reflectance (%)

0 1 2 3 4 5 6 T 8 9 10 11 12 13 14
Wavelength (jum)

FIGURE 2.22: Lambertian black foil spectral reflectance curve selected from the datasheet [11].
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FiGURE 2.23: Red channel selection and mask application on the Lambertian black foil re-
flectance curve of Fig. 2.22.
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FIGURE 2.24: The best-fitted curve obtained from Linear Interpolation of the spectral re-
flectance curve of Fig. 2.23 and is depicted within the wavelength range of (a) 100nm to
1400 nm, (b) the R band, and (c) the NIR band.
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FIGURE 2.25: Radiometric correction was applied to the fresh vegetation reflection captured
by the camera, taking into account the humid, hazy atmospheric conditions in the red band
as well as the solar irradiance as incident light.

2.9.2.2 Radiometric Compensation by Using Multipel Points Diffuse Re-
flectance Coatings for UAV Multispectral Imaging

Diffuse reflectance coatings, like Spectraflect or Permaflect, are used on radiometric ref-
erence targets to provide a consistent and highly reflective surface. This ensures the
sensor readings are accurate across the different wavelengths, including visible, NIR,
and sometimes Ultraviolet (UV) bands. In UAV operations, radiometric reference tar-
gets and other reflective surfaces may be exposed to harsh environmental conditions. The
ideal coatings should be non-specular, durable, highly reflective, and consistent across a
broad range of wavelengths. Labsphere offers three specialized coatings—Spectraflect®),
Permaflect®), and Infragold@®—each designed for different environments and applica-
tions [5].

e Spectraflect: A barium sulfate coating ideal for UV-VIS-NIR range (300 to
2400 nm), offering over 98 % reflectance when applied thickly. It’s thermally stable
up to 160°C but not suitable for very humid conditions [5].

e Permaflect: A durable, water-resistant coating designed for harsh environments,
effective in the visible to NIR range (350 to 1200 nm). It’s stable up to 100°C and
suitable for high humidity, but not recommended for UV applications [5].

e Infragold: A diffuse, electrochemically plated gold coating with high reflectance
from 0.7 to 20pm. It offers vacuum stability, no outgassing, and a laser damage
threshold of 19.3Jcm™2 at 10.6um. Reflectance exceeds 94 % above 1m, with
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FIGURE 2.26: Typical 8 /H Reflectance Factors of Permaflect Sheets. The reflectance factors
for various Permaflect sheets are as follows: PF-94 (94 % reflectance), PF-80 (80 % reflectance),
PF-50 (50 % reflectance), PF-18 (18 % reflectance), PF-10 (10 % reflectance), and PF-5 (5%
reflectance). These sheets represent a range of reflectance values from very high to very low,
used for calibrating and evaluating camera sensor performance across different lighting and
surface conditions [5].

data traceable to National Institute of Standards and Technology (NIST). Com-
monly used in NIR-MIR applications like integrating spheres and space equipment,
it can be applied to metals like aluminum, nickel, and steel.

Each coating is applied by spraying onto a prepared surface, with Spectraflect being ideal
for optical components, and Permaflect for more demanding environments. This study
focuses on the radiometric compensation of camera sensors using Permaflect sheets,
which are durable, water-resistant, and maintain high reflectance in challenging envi-
ronments. Permaflect (PF) sheets with varied reflectance levels—5 %, 10 %, 18 %, 50 %,
80 %, and 94 %—are employed to ensure comprehensive radiometric compensation across
a range of lighting and surface conditions. These sheets, representing a wide spectrum of
reflectance values as shown in Fig. 2.26, facilitate the evaluation and refinement of sensor
accuracy in diverse reflective scenarios. As illustrated in Fig. 2.26, the 8°/H reflectance
factor is a standardized measurement technique in which light is incident at an 8-degree
angle relative to the surface normal, and the reflected light is measured hemispherically,
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capturing reflections from all directions. This method offers a consistent basis for eval-
uating the influence of varying reflectance levels on sensor performance. The details of
the reflectance percentages are described as follows:

e Low Reflectance (5% and 10 %):

- 5% Reflectance: This sheet simulates extremely low reflectance, useful for
modeling sensor behavior under very dark or low-light conditions. It assesses the
sensor’s capability to accurately capture and measure minimal light reflections,
which is critical for evaluating performance in shadowy or low-contrast environ-
ments.

- 10 % Reflectance: Slightly higher than the 5 % level, this sheet provides insights
into sensor handling of surfaces with marginally higher reflectance. It aids in fine-
tuning sensor radiometric compensation for improved accuracy in conditions with
limited light reflection but brighter than the lowest reflectance scenarios.

Moderate Reflectance (18 % and 50 %):

- 18% Reflectance: Commonly used as a standard radiometric compensation
point, this sheet reflects typical gray card levels. It is instrumental in modeling
sensor performance under balanced lighting conditions and offers a reference for
average reflectance scenarios prevalent in everyday environments.

- 50 % Reflectance: Representing a mid-range reflectance, this sheet is valuable
for simulating standard conditions, ensuring accurate sensor radiometric compen-
sation for surfaces with moderate reflectance. It helps assess sensor performance
under typical lighting conditions and adjusts for common environmental bright-
ness.

High Reflectance (80 % and 94 %):

- 80 % Reflectance: This high reflectance level evaluates how the sensor performs
with bright or reflective surfaces. It is crucial for understanding sensor behavior
under high-intensity light conditions that may cause reflections and glare.

- 94 % Reflectance: Near the maximum reflectance level, this sheet tests the sen-
sor’s capability to handle highly reflective surfaces. It models sensor performance
in extremely bright environments, ensuring accuracy and minimizing distortions
from intense light reflections.

Table 2.10, derived from the available datasheet [5], provides a comprehensive overview
of the reflectance characteristics of various Permaflect sheets across different wavelengths
from 250 to 2500 nm. Specifically, it details the reflectance values for PF-94 (with 94 %
reflectance), PF-80 (with 80 % reflectance), PF-50 (with 50 % reflectance), PF-18 (with
18 % reflectance), PF-10 (with 10 % reflectance), and PF-5 (with 5% reflectance). This
table shows the reflective properties of the sheets at different spectral intervals.
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TABLE 2.10: The detailed reflectance for various Permaflect sheets, PF-94 (94 % reflectance),
PF-80 (80 % reflectance), PF-50 (50 % reflectance), PF-18 (18 % reflectance), PF-10 (10 %

reflectance), and PF-5 (5% reflectance) for separate wavelengths is derived from [5].

Wavelength Typical 8/H Reflectance Factor
(nm) 5% | 10% | 18% | 50% | 80% | 94%
250 0.05| 0.1 | 0.13 | 0.3 | 0.33 | 0.63
300 0.05| 0.1 | 0.15 | 0.43 | 0.6 | 0.88
350 0.05| 0.1 | 0.16 | 0.46 | 0.72 | 0.94
400 0.05| 0.1 | 0.16 | 0.48 | 0.77 | 0.96
450 0.05 | 0.1 | 0.17 | 048 | 0.79 | 0.97
500 0.056| 0.1 | 0.17 | 0.49 | 0.79 | 0.97
550 0.05| 0.1 | 0.17 | 0.49 | 0.79 | 0.97
600 0.056| 0.1 | 0.18 | 0.5 0.8 | 0.97
650 0.05| 0.1 | 0.18 | 0.5 0.8 | 0.97
700 0.04 | 0.1 | 0.18 | 0.5 0.8 | 0.97
750 0.04 | 0.1 | 0.18 | 0.5 | 0.79 | 0.97
800 0.04 | 0.1 | 0.18 | 0.51 | 0.79 | 0.97
850 0.04 | 0.1 | 0.18 | 0.51 | 0.79 | 0.97
900 0.04 | 0.1 | 0.19 | 0.51 | 0.79 | 0.97
950 0.04 | 0.1 | 0.19 | 0.51 | 0.79 | 0.97
1000 0.04 | 0.1 | 0.19 | 0.52 | 0.79 | 0.96
1050 0.04 | 0.1 | 0.19 | 0.52 | 0.79 | 0.96
1100 0.04 | 0.1 | 0.19 | 0.52 | 0.79 | 0.96
1150 0.04 | 0.1 | 0.19 | 0.52 | 0.77 | 0.95
1200 0.04 | 0.1 | 0.19 | 0.52 | 0.77 | 0.94
1250 0.05 | 0.1 0.2 | 0.53 | 0.78 | 0.96
1300 0.05 | 0.1 0.2 | 0.53 | 0.78 | 0.96
1350 0.05 | 0.1 0.2 | 053 | 077 | 0.94
1400 0.05 | 0.1 0.2 | 0.52 | 0.74 | 0.91
1450 0.05 | 0.11 | 0.2 | 0.53 | 0.74 | 0.9
1500 0.05 | 0.11 | 0.2 | 0.53 | 0.76 | 0.92

2.9.2.3 Results

The workflow mentioned in Section 2.8 is completed by adding the radiometric com-
pensation step before evaluating NDVI as shown in Fig. 2.27. To evaluate the impact
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FIGURE 2.27: The proposed workflow for the NDVI evaluation incorporates the modeling of
solar irradiation and atmospheric transmission under various conditions (including dry—clear
and humid-hazy scenarios), vegetation reflection corresponding to both dry and fresh leaf
states, as well as the performance of the camera sensor, digitization, and radiometric compen-
sation steps.

of various sources of uncertainty on NDVI measurements, MCS is utilized. To develop
the radiometric compensation model, Permaflect sheet reflectance data within the range
of 500nm to 800nm is selected for the R band, and within the range of 700nm to
1000 nm for the NIR band, as detailed in Table 2.10. The best-fitting curves for the
selected spectral bands at distinct reflection percentages were obtained using a linear
interpolation function, implemented through MATLAB software tools. Consequently,
for each reflection percentage listed in Table 2.10, two curves—one for the R band and
one for the NIR band—are generated. After that, the derived mathematical models
and solar irradiance in Sections 2.8.1.1 are multiplied element-wise for both the R and
NIR bands. The area under each curve is evaluated to model the sheet’s reflectance,
where solar irradiance acts as the incident light source. Then these models are multi-
plied element-wise with atmospheric conditions models as discussed in Section 2.8.1.2,
the study achieves a comprehensive understanding of the effects of atmospheric condi-
tions on solar irradiance transmission under varying scenarios, including dry-clear and
humid-hazy conditions, on Permaflect sheet reflectance. Subsequently, by considering
the use of the DJI P4-multispectral camera, as detailed in Subsection 2.6.2, the quanti-
zation and digitalization steps described in Section 2.8.1.5 are applied to the data. This
process models the camera’s behavior in capturing data from the Permaflect sheet in a
real scenario and then converting the reflected light into a digital value. Then, the area
under the curve, representing the energy reflected from the Permaflect sheet in a real
scenario, is evaluated and illustrated in Figs 2.28, 4.34, 2.30, and 2.31. These results
are presented separately for both the R and NIR bands and under the conditions of
dry-clear and humid-hazy atmospheres.
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FiGURE 2.28: The energy reflected by
the Permaflect Sheet in the R band rela-
tive to the energy captured by the camera
in a humid-hazy atmosphere.
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FIGURE 2.29: The energy reflected by
the Permaflect Sheet in the R band rela-
tive to the energy captured by the camera
in a dry-clear atmosphere.
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FIGURE 2.32: Analysis of Permaflect sheet reflectance under incident solar irradiance, con-
sidering atmospheric transmittance in dry-clear and humid-hazy conditions, and subsequent
energy capture and conversion to DNs by a camera sensor.
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FIGURE 2.35: Linear interpolation of MATLAB functions to generate the optimal fitted curve
for scattered data points in the R and NIR bands of points in Fig. 2.32, analyzed separately
under both dry-clear and humid-hazy atmospheric conditions.

To develop a comprehensive radiometric compensation model, multiple Permaflect
Sheets with reflectances of 5 %, 10 %, 18 %, 50 %, 80 %, 94 % were considered. Linear in-
terpolation using MATLAB functions was employed to generate the optimal fitted curve
for the scattered data points, as illustrated in Figs. 2.28, 4.34, 2.30, and 2.31. Subse-
quently, a radiometric compensation curve is derived based on the Permaflect Sheets’
reflection when solar irradiance is incident light, in relation to the digitized Permaflect
Sheets’ reflected energy, while solar irradiance passes through the atmosphere for the R
and NIR bands separately, under both dry—clear and humid-hazy atmospheric condi-
tions. These radiometric compensation curves are evaluated and presented in Figs. 2.33
and 2.34, which are ready to use in the workflow shown in Fig. 2.27. To investigate
the impact of atmospheric conditions and to perform radiometric compensation on the
evaluation of NDVI measurements as proposed in Section 2.8, a MCS is conducted in
five parts. The five parts are as follows:

A) NDVI uncertainty versus nominal wavelength

B) NDVI uncertainty versus standard deviation of solar irradiance

D) NDVI uncertainty versus leaf state

E

)
)
C) NDVI uncertainty versus camera SNR
)
) NDVI uncertainty versus all uncertainty sources
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In all five parts, to apply radiometric compensation based on the workflow shown in
Fig. 2.27, the computed energy in the R and NIR bands is compared to the radiometric
compensation curve in Fig. 2.35 before evaluating the NDVI values. The computed
values are then replaced with the energy measured from the compensated curves at the
corresponding points.

A) NDVI Uncertainty vs Nominal Wavelength
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FIGURE 2.36: Box plots illustrating the effect of nominal wavelength as a source of uncertainty
on NDVTI values for atmosphere conditions: (I) Dry-clear, and (II) Humid-hazy, considering
both DL and FL.

TABLE 2.11: Statistical parameters MED, first and third Quartiles (Q1, Q3), IQR and dis-
tance of first quartiles of fresh leaf and third quartiles of dry leaf when the effect of nominal
wavelength as an uncertainty source on NDVI values for different LS, and ATMC is evaluated.

LS ATMC  MED QI Q3 IQR Qlp-Q3p

Frog, Humid-Hazy 0.710 0.664 0.715 0.051 0.049
Dry-Clear  0.709 0.680 0.729 0.049 0.062

Dry Humid-Hasy 0582 0550 0615 0.064 0.049
Dry-Clear  0.598 0.563 0.615 0.052 0.062
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The method for evaluating NDVTI values while considering variations in the nominal
wavelength of the camera as a source of uncertainty follows the same approach described
in Subsection 2.8.3.1. Additionally, the radiometric compensation is applied as previ-
ously outlined in this section. The results of this analysis are presented in Fig. 2.36, with
detailed data provided in Table 2.11. When comparing DL conditions under dry-clear
atmosphere (Fig. 2.36 (I)) with those under humid-hazy atmosphere (Fig. 2.36 (II)),
the results indicate no significant difference; also, this is the same for FL. This shows
that the radiometric compensation process effectively compensates for the variations in
atmospheric conditions. The slight variation observed is attributed to the uncertainty
in the nominal wavelength, which is negligible.

B) NDVI Uncertainty vs Solar Irradiance Standard Deviation

The procedure for evaluating NDVI uncertainty, considering the standard deviation
of solar irradiance, follows the same approach outlined in Subsection 2.8.3.2, with ra-
diometric compensation applied as described in this section. The analysis results are
depicted in Fig. 2.37, with comprehensive data detailed in Table 2.12. A comparison
between DL conditions under a dry-clear atmosphere (Fig. 2.37 (I)) and a humid-hazy
atmosphere (Fig. 2.37 (II)) shows no statistically significant differences, a trend similarly
observed for FL. This outcome suggests that the radiometric compensation process effec-
tively mitigates the influence of varying atmospheric conditions. The minor variations
observed are attributed to the uncertainty in the solar irradiance standard deviation,
which is considered negligible.
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as a source of uncertainty on NDVT values for atmosphere conditions: (I) Dry-clear, and (II)
Humid-hazy, considering both DL and FL.

TABLE 2.12: Statistical parameters MED, first and third Quartiles (Q1, Q3), IQR and distance
of first quartiles of fresh leaf and third quartiles of dry leaf when the effect of solar irradiance
standard deviation as an uncertainty source on NDVI values for different LS, and ATMC is
evaluated.

LS ATMC  MED Q1 Q3 IQR Qlp-Q3p

Frog,  Humid-Hazy 0.719 0719 0.722° 0.003 0.107
Dry-Clear  0.701 0.701 0.702 0.001 0.103

Dry Humid-Hazy 06120584 0612 0.028 0.107
Dry-Clear  0.598 0.596 0.598 0.002 0.103

C) NDVI Uncertainty vs Leave State

The procedure for evaluating NDVI uncertainty, considering variations in NDVT val-
ues, follows the methodology outlined in Subsection 2.8.3.4, with radiometric compen-
sation applied as detailed at the beginning of this section. The analysis results are
presented in Fig. 2.38, with corresponding data provided in Table 2.13. A comparison of
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DL conditions between a dry-clear atmosphere (Fig. 2.38 (I)) and a humid-hazy atmo-
sphere (Fig. 2.38 (II)) shows no significant differences, a trend also observed for FL. This
indicates that the radiometric compensation process successfully mitigates atmospheric
effects. The minor observed variations are likely attributable to uncertainty in NDVI
values, which is deemed negligible.
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FIGURE 2.38: Box plots illustrating the effect of the variability of NDVI values as a source of
uncertainty on NDVI values for atmosphere conditions: (I) Dry-clear, and (II) Humid-hazy,
considering both DL and FL.

TABLE 2.13: Statistical parameters MED, first and third Quartiles (Q1, Q3), IQR and distance
of first quartiles of fresh leaf and third quartiles of dry leaf when the effect of the variability of
NDVI values as an uncertainty source on NDVI values for different LS, and ATMC is evaluated.

LS ATMC  MED Q1 Q3 IQR Qlp-Q3p
Humid-Hazy 0.730 0.709 0.749 0.040 0.066
Dry-Clear  0.728 0.707 0.738 0.031 0.077
Humid-Hazy 0.615 0.595 0.643 0.048 0.066
Dry-Clear  0.608 0.589 0.630 0.041 0.077

Fresh

Dry
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D) NDVI Uncertainty vs Camera SNR

The procedure for evaluating NDVI uncertainty, accounting for variations in camera
SNR, follows the approach described in Subsection 2.8.3.3, with radiometric compensa-
tion applied as outlined earlier in this section. The analysis outcomes are illustrated in
Fig. 2.39, with a comprehensive dataset provided in Table 2.14. When comparing a dry
leaf under both dry-clear and humid-hazy atmospheric conditions (ADDL, AHDL) at
SNR of (I) 40dB, (II) 50dB, and (III) 60 dB, no significant differences were detected. A
similar pattern is observed for the fresh leaf under both dry-clear and humid-hazy atmo-
spheric conditions (ADFL, AHFL). These results suggest that the radiometric compen-
sation procedure successfully neutralizes the impact of different atmospheric conditions.
The slight variations observed are likely due to uncertainties in camera SNR, which are
considered to be insignificant.
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FIGURE 2.39: Box plots illustrating the influence of the camera sensor under three different
SNR conditions: (I) SNR = 40dB, (II) SNR = 50dB, and (III) SNR = 60dB, serving as
uncertainty factors on NDVI values. The plot considers various atmospheric conditions and
leaf states, including: ADDL, ADFL, AHDL, and AHFL.
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TABLE 2.14: Statistical parameters MED, first and third Quartiles (Q1, Q3), IQR and distance
of first quartiles of fresh leaf and third quartiles of dry leaf when the effect of camera SNR at
40dB, 50dB, and 60 dB as an uncertainty source on NDVTI values for different LS, and ATMC
is evaluated.

LS ATMC  SNR[dB] MED Q1 Q3 IQR Qlr-Q3p
40 0.719 0.719 0719 0 0.107
Humid-Hazy 50 0.719 0.719 0.719 0 0.107
Fred, 60 0.719 0.719 0.719 0 0.107
40 0.70I 0.701 0.70L 0 0.103
Dry-Clear 50 0.701 0.701 0.701 0 0.103
60 0.701 0.701 0.701 0 0.103
40 0.612 0.584 0.612 0.028 0.107
Humid-Hazy 50 0.612 0.612 0.612 0 0.107
Dry 60 0.612 0.612 0.612 0 0.107
40 0.598 0.598 0.598 0 0.103
Dry-Clear 50 0.598 0.598 0.598 0 0.103
60 0.598 0.598 0.598 0 0.103

E) NDVI Uncertainty vs All Uncertainty Sources

The procedure for evaluating NDVI uncertainty, accounting for the combined effects
of all uncertainty sources, follows the methodology outlined in Subsection 2.8.3.5, with
radiometric compensation applied as described earlier in this section. The results of the
analysis are shown in Fig. 2.40, with detailed data provided in Table 2.15. A comparison
of a dry leaf under dry-clear and humid-hazy conditions (ADDL, AHDL) at SNR levels
of (I) 40dB, (II) 50dB, and (III) 60 dB shows no significant differences. A similar trend
is observed for a fresh leaf under the same conditions (ADFL, AHFL). These findings
suggest that the radiometric compensation process successfully mitigates atmospheric
variations, even when accounting for the combined effects of all uncertainty sources.
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FI1GURE 2.40: Box plots illustrating the effect of all uncertainty sources under three different
SNR conditions: (I) SNR = 40dB, (II) SNR = 50dB, and (III) SNR = 60dB, serving as
uncertainty factors on NDVI values. The plot considers various atmospheric conditions and
leaf states, including: ADDL, ADFL, AHDL, AHFL, AMDL, and AMFL [4].
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TABLE 2.15: Statistical parameters MED, first and third Quartiles (Q1, Q3), IQR and dis-
tance of first quartiles of fresh leaf and third quartiles of the dry leaf when the effect of the
combination of all uncertainty sources on NDVTI values for different LS, and ATMC is evalu-

ated.

LS ATMC SNR[dB] MED Q1 Q3 IQR Qlp —Q@3p

40 0.728 0.690 0.736 0.046 0.063

Humid-Hazy 50 0.720 0.689 0.740 0.051 0.052

Fresh 60 0.727 0.705 0.740 0.035 0.070

40 0.725 0.695 0.740 0.055 0.060

Dry-Clear 50 0.720 0.705 0.738 0.033 0.076

60 0.723 0.680 0.742 0.062 0.045

40 0.608 0.556 0.627 0.071 0.063

Humid-Hazy 50 0.601 0.580 0.637 0.057 0.052

Dry 60 0.602 0.569 0.635 0.066 0.070

40 0.605 0.570 0.640 0.060 0.055

Dry-Clear 50 0.602 0.585 0.629 0.044 0.076

60 0.609 0.577 0.635 0.058 0.045

2.9.3 Applying Uncertainty Sources Before Evaluating the Radiomet-

ric Compensation Curve

In subsection 2.9.2, during the evaluation of the radiometric compensation curve, the
effect of uncertainty sources was not considered. However, in real-world scenarios, var-
ious uncertainty sources can influence the evaluation of the radiometric compensation
curve. In this section, a combination of uncertainty sources, including variations in so-
lar irradiance, the camera’s nominal wavelength, and SNR under different atmospheric

conditions (e.g., humid-hazy and clear dry environments), are taken into account. The

results of these considerations are presented in Fig. 2.45.
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FIGURE 2.45: An analysis of Permaflect sheet reflectance under incident solar irradiance,
accounting for atmospheric transmittance in both dry-clear and humid-hazy conditions, as
well as the subsequent energy capture and conversion to DNs by a camera sensor. The mea-
surements are influenced by uncertainty sources, including variations in solar irradiance, the
camera’s nominal wavelength, and SNR across these atmospheric conditions.
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In a humid-hazard atmospheric condition for R, while considering the effect of all
uncertainty sources, the best-fitted curve with a 95% confidence level is a first-degree
polynomial, as shown in Fig. 2.41. The equation for the curve is f(x) = p1-x+ p2, where
p1 = 3.810 with a lower bound of 3.798 and an upper bound of 3.821, and ps = —0.124
with a lower bound of —0.328 and an upper bound of 0.080. The R-squared value is
0.999, and the RMSE is 1.655. Similarly, under the same atmospheric conditions for
NIR, the best-fitted curve with a 95% confidence level is also a first-degree polynomial,
as depicted in Fig. 2.43. In this case, p; = 6.804 with a lower bound of 6.750 and an
upper bound of 6.857, and ps = 0.386 with a lower bound of —0.223 and an upper
bound of 0.994. The R-squared value is 0.990, and the RMSE is 4.927. In a dry-clear
atmospheric condition for R, accounting for all uncertainty sources, the best-fit curve at
a 95% confidence level is a first-degree polynomial, as shown in Fig. 2.42. The equation
is given by f(x) = p1 - © + p2, where p; = 7.955 with a confidence interval of 7.944 to
7.947, and po = 0.028 with a confidence range of —0.165 to 0.220. The model yields an
R-squared value of 1.000 and an RMSE of 1.560. For NIR under the same atmospheric
conditions, the best-fit curve at a 95% confidence level is also a first-degree polynomial,
as shown in Fig. 2.44. Here, p; = 12.203 with a confidence interval between 12.173 and
12.234, and ps = 0.180 with a range of —0.167 to 0.528. The R-squared value is 0.999,
and the RMSE is 2.813.

2.9.3.1 Experimental Part and Result

In this part, the process described in Section 2.9.2.3 is performed, with the key difference
that uncertainty sources are considered during the evaluation of the radiometric com-
pensation curve as shown in Fig. 2.45. The results are then analyzed for two aspects:
A) NDVTI uncertainty versus nominal wavelength, and B) NDVI uncertainty versus all
uncertainty sources. After that, these results are compared with those presented in
Section 2.8 and in the paper [4], where radiometric compensation was not applied.

A) NDVI Uncertainty vs Nominal Wavelength

To evaluate NDVI values, the approach described in Subsection 2.9.2.3 is performed,
with the difference that for the step of radiometric compensation, the curve of Subsec-
tion 2.9.3 is used instead. The results of this analysis are presented in Fig. 2.46b, with
detailed data provided in Table 2.16. As shown in Fig. 2.46b, by applying a threshold
on NDVI value around 0.632, it is possible to distinctly differentiate between DL and
FL across varying atmospheric conditions, even in the presence of this source of uncer-
tainty. Furthermore, Fig. 2.46 shows the comparison of box plots of NDVI values that
result from paper [4] or Subsection 2.8.3.1 before applying the radiometric compensation
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step (a), and (b) after applying the radiometric compensation step. When comparing
DL conditions under a dry-clear and humid-hazy atmosphere (ADDL and AHDL) in
Fig. 2.46, it is clear that the box plots for ADDL and AHDL in panel (b) have totally
overlapped with respect to those in panel (a). The results indicate that the radiometric
compensation process effectively compensates for variations in atmospheric conditions.
The slight variation observed is attributed to the uncertainty in the nominal wavelength,
which is negligible. This result is the same for the comparison of FL states under both
a dry-clear atmosphere and a humid-hazy atmosphere (ADFL and AHFL) before and
after applying radiometric compensation.
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FIGURE 2.46: Box plots illustrate the effect of nominal wavelength as a source of uncertainty
on NDVI values under different atmospheric conditions. The plot considers (a) results from
paper [4] before applying the radiometric compensation step, and (b) after applying the radio-
metric compensation step in various atmospheric conditions and leaf states, including ADDL,
ADFL, AHDL, AHFL, AMDL, and AMFL.
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TABLE 2.16: Statistical parameters MED, first and third Quartiles (Q1, Q3), IQR and distance
of first quartiles of fresh leaf and third quartiles of dry leaf when radiometric compensation
curve is applied and the effect of nominal wavelength as an uncertainty source on NDVI values
for different LS, and ATMC is evaluated.

LS ATMC  MED QI Q3 IQR Qlp-Q3p
Frog, Humid-Hazy 0.700 0.666 0.718 0.052 0.054
Dry-Clear  0.706 0.679 0.725 0.046 0.068
Humid-Hazy 0.584 0.555 0.612 0.057 0.054
Dry-Clear  0.595 0.565 0.611 0.046 0.068

Dry

B) NDVI Uncertainty vs All Uncertainty Sources

The procedure for evaluating NDVT uncertainty, accounting for the combined effects
of all uncertainty sources including variations in solar irradiance, changing atmospheric
conditions, nominal wavelength fluctuations in cameras, SNR, and variability of the
NDVI within the two LS, follows the methodology outlined in Subsection 2.8.3.5 or in
the paper [4], with radiometric compensation curve of Subsection 2.9.3 is applied. The
results of the analysis for SNR=60dB are shown in Fig. 2.47b, with detailed data pro-
vided in Table 2.17 for SNR levels of 40 dB, 50 dB, and 60 dB. Fig. 2.47b illustrates that
setting a threshold of approximately 0.650 for NDVI values enables a clear distinction
between DL and FL under diverse atmospheric conditions, even in the presence of a com-
bination of all sources of uncertainty. Moreover, a comparison of DL conditions under
dry-clear (ADDL) and humid-hazy (AHDL) atmospheres, as shown in Fig. 2.47 panels
(a) and (b), reveals a complete overlapping of box plots for ADDL and AHDL in panel
(b) compared to panel (a). This overlap suggests that the radiometric compensation
process effectively adjusts for atmospheric variations. The minor observed variation,
caused by uncertainty sources, is negligible. Similar results are observed when compar-
ing FL conditions under both dry-clear (ADFL) and humid-hazy (AHFL) atmospheres
before and after radiometric compensation. In addition, the results indicate that the
inclusion of uncertainty sources in the radiometric compensation process has a measur-
able, though small, impact on NDVI retrieval. For dry and fresh leaves, accounting for
these uncertainties results in a shift of approximately 0.050 in NDVI values compared
to scenarios in which the uncertainty sources are not incorporated in the evaluation of
the radiometric compensation step.
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FIGURE 2.47: Box plots illustrating the effect of all uncertainty sources under SNR = 60 dB
serving as uncertainty factors on NDVI values. (a) results from paper [4] before applying
the radiometric compensation step, and (b) after applying the radiometric compensation step.
The plot considers various atmospheric conditions and leaf states, including ADDL, ADFL,
AHDL, AHFL, AMDL, and AMFL.
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TABLE 2.17: Statistical parameters MED, first and third Quartiles (Q1, Q3), IQR and dis-
tance of first quartiles of fresh leaf and third quartiles of the dry leaf when the effect of the
combination of all uncertainty sources on NDVTI values for different LS, and ATMC is evalu-
ated.

LS ATMC  SNR[dB] MED Q1 Q3 IQR Qlr-Q3p
40 0.725 0.690 0.738 0.048 0.067
Humid-Hazy 50 0.718 0.694 0.739 0.045 0.060
60 0.725 0.704 0.741 0.037 0.073

Fresh 40 0.722 0.698 0.739 0.041 0.060
Dry-Clear 50 0.719 0.703 0.735 0.032 0.077

60 0.727 0.688 0.743 0.055 0.056

40 0.602 0.558 0.623 0.065 0.067

Humid-Hazy 50 0.600 0.578 0.634 0.056 0.060

Dey 60 0.602 0.571 0.631 0.060 0.073

40 0.600 0.573 0.638 0.065 0.060
Dry-Clear 50 0.603 0.583 0.626 0.043 0.077
60 0.605 0.575 0.632 0.057 0.056

2.10 Proposed Radiometric Compensation Method

In remote sensing, the electromagnetic spectrum is crucial, especially for UAV-based
multispectral and hyperspectral imaging. Atmospheric gases and aerosols alter solar
irradiance before it reaches the Earth’s surface, affecting reflected radiance—key for
vegetation analysis. Understanding and mitigating these effects are essential for accurate
data interpretation [103]. While satellites experience twice the atmospheric interference,
UAVs operate at lower altitudes (100 m), where only the direct solar path to the ground
is significant.

In this study, a novel radiometric compensation method is introduced, developed
through two distinct phases, as illustrated in Fig. 2.48. Initially, the energy reflected
from six Permaflect sheets with varying reflectance percentages is emulated, considering
the sheets placed on the ground, with solar irradiance passing through the atmosphere
and incident to the sheets, this workflow is shown in Fig. 2.48(a) and the result of
this part is shown in (b). In the second phase, a Monte Carlo simulation is employed
to statistically analyze the emulated reflected energy from the sheets and quantify the
impact of uncertainty sources on their reflectance, thereby enabling the determination
of their statistical distribution (Fig. 2.48(c)).
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FIGURE 2.48: The proposed workflow for evaluating the radiometric compensation method
includes: (a) modeling solar irradiation and atmospheric transmission under various conditions
(including dry—clear and humid—hazy scenarios), emulating the reflection of reference panels
based on Permaflect sheets’ datasheets, and assessing the performance of the camera sensor
and digitization process to model the energy reflected from the sheets, as would occur in a
real-world scenario; (b) computing the initial radiometric compensation curve separately for
the R and NIR bands; and (¢) conducting a Monte Carlo simulation with 100 iterations to
assess the impact of uncertainty sources on the evaluation in part (a), thereby generating the
radiometric compensation curve while accounting for these uncertainties.

First, as shown in Fig. 2.48(a), it is necessary to model solar irradiance. The SSI
dataset, measured by the SIM instrument, is publicly available [118]. The dataset in-
cludes 24-hour averaged measurements over a spectral range from 200 nm to 2400 nm,
with spectral resolutions varying from 2nm (for wavelengths < 0.28 pm) to 45nm (for
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wavelengths > 0.4 pm). Measurements were taken at a mean solar distance of 1 Astro-
nomical Unit(AU) and zero relative line-of-sight velocity to the Sun (i.e., no movement),
with an absolute uncertainty of approximately 0.2 %. The dataset includes information
on Julian day, wavelength range, instrument mode, data version, irradiance values, as-
sociated uncertainties, and data quality metrics. For modeling solar irradiance, spectral
bands within the R (500-800 nm) and NIR (700-1000 nm) wavelength ranges, each with
a resolution of 45nm, are selected from the SSI dataset, the data expressed in units
of W-m~2.nm~!. Optimal fitting curves for these spectral bands are derived using
linear interpolation, implemented with MATLAB software tools, specifically MATLAB
R2024b [4].

For atmospheric transmission, the empirical method employed by [68] takes into
account several factors, including gas absorption, water vapor, and scattering effects in
dry-clear and humid-hazard conditions. In estimating surface reflectance, it is crucial
to consider gas absorption by ozone (Ogz), oxygen (Og2), methane (CHy), and carbon
dioxide (COg), which absorb solar radiation at specific wavelengths, thereby significantly
impacting the received solar flux. Water vapor also exhibits strong absorption features,
particularly at the wavelength bands 0.94 pm and 1.14 pm, complicating the retrieval
of surface reflectance. Scattering by molecules is most prominent in the visible/near-
infrared (VNIR) spectrum, while aerosols contribute significantly to scattering in the
shortwave infrared (SWIR) due to their larger particle sizes [68]. Although aerosol
absorption is generally minor compared to molecular absorption, it still plays a role in
the overall scattering. Moreover, to distinguish between dry and humid atmospheric
conditions, the histogram of water vapor reveals a bimodal distribution, representing
two distinct conditions: the moist atmosphere, characterized by higher levels of water
vapor, and the dry atmosphere, which shows lower levels of water vapor. The empirical
method for atmospheric transmission, presented in [68], is used for modeling atmospheric
transmission by utilizing the linear interpolation function in MATLAB, with fitting curves
for the selected spectral bands in the R (500-800 nm) and NIR (700-1000 nm) ranges,
with a resolution of 90 pm. The curves are expressed as the percentage of transmitted
energy per nm. This model generalizes atmospheric behavior, making it applicable to
any location on Earth.

By integrating solar irradiance and atmospheric transmission models, this study an-
alyzes how varying atmospheric conditions—specifically dry-clear and humid-hazy envi-
ronments—affect the transmission of solar irradiance. To capture these effects, spectral
irradiance and atmospheric transmission curves are computed separately for each spec-
tral band—R and NIR—and for each atmospheric condition [119]. These curves are
sampled at 1nm wavelength intervals, and their corresponding values are multiplied
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element-wise to yield the transmitted spectral irradiance curve. This process is mathe-
matically expressed as:

Lz()‘) = [SZT(A) + nzr()‘)] ) [Ha()‘) + na()‘)} (2'14)

where:

e L;()\) is the transmitted spectral irradiance at wavelength \, representing the ef-

fective irradiance reaching the Earth’s surface. Units: W-m™2 - nm™!

e S;r(\) is the spectral solar irradiance at the top of the atmosphere (TOA), typically
modeled or measured based on standard solar spectra. Units: W-m™2 - nm™!

e H,()\) is the atmospheric transmission function, describing the fraction of irradi-
ance transmitted through the atmosphere at each wavelength under atmospheric
condition a. Unitless, ranging from 0 (fully absorbed) to 1 (fully transmitted)

e n;-(A) is used to model measurement accuracy and is represented as a Gaussian-
distributed random variable with zero mean and a standard deviation defined by
the measurement accuracy of S;.(\). Its unit is W-m=2 - nm~!.

e 1,(A) models measurement accuracy, which is unitless, and is represented as an
additive Gaussian noise random variable with zero mean and a standard deviation
determined by the measurement accuracy of H,()).

For emulating the reflection from the panel, six Permaflect sheets are utilized. These
durable, water-resistant sheets maintain high reflectance across diverse environments and
cover a wide range of reflectance levels (5 %, 10 %, 18 %, 50 %, 80 %, and 94 %), spanning
reflectance values from 250 nm to 2500 nm [5]. This variety in reflectance percentages
and broad spectrum enables comprehensive radiometric compensation under varying
lighting and surface conditions [134]. To model panel reflection, values in the 500 nm
to 800 nm range for the R band and 700 nm to 1000 nm for the NIR band are selected,
with a resolution of 5nm, based on the Permaflect sheets’ datasheet. The fitted curves
are obtained using the MATLAB software tool. These curves represent the intrinsic
reflectance characteristics of the sheets and are expressed as the percentage of reflected
energy per nm, independent of solar irradiance and atmospheric effects.

For the next step, the modeling of the camera sensor consists of two steps: (I)
measuring the OD according to the nominal wavelength and bandwidth of the camera
sensors, and (II) digitizing the OD according to the full scale of the camera and the
number of bits, as specified in the camera’s datasheet [4]. For instance, the DJI Mavic
3M, along with its specifications [6], is considered in this study. This sensor incorporates
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FIGURE 2.49: Radiometric compensation curves are evaluated based on the energy reflected
by the Permaflect sheets relative to the energy captured by the camera after passing through
atmospheric conditions, while uncertainty sources affect the measurements. (a) For the R band
in the humid-hazy atmosphere, (b) for the R band in the dry-clear atmosphere, (c¢) for the NIR
band in the humid-hazy atmosphere, and (d) for the NIR band in the dry-clear atmosphere.

non-overlap optical filters corresponding to the R channel centered at 650 nm + 16 nm
and the NIR channel at 860 nm + 26 nm. In the modeling step, the system operates with
a spectral bandwidth of 10 nm, employs an n-bit depth for digitization, and represents
spectral information in terms of OD [116]. (I) OD characterizes the extent to which
specific wavelengths of light or radiance are blocked by an optical filter. It is important
to note that camera sensors do not measure radiance at a single, exact wavelength.
Instead, they integrate radiance over a finite spectral bandwidth centered around the
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nominal wavelength and report this aggregated value as the OD for the targeted spectral
region. In this study, since irradiance is the measured quantity, the unit of measurement
for OD is expressed in W-m™2. To formulate this step, it is important to mention
that the radiation reflected by an object and measured by the camera sensor, Ls(\), is
expressed as follows:

Ly(\) = p(A) - Li(N) (2.15)

Where L;()\) is the incident irradiation upon the object, as mentioned in Equation (2.14),
and p(A) generally denotes the material’s spectral reflectance, a dimensionless metric [2].
However, in this context, p(\) refers to the panel reflectance. Then, the OD is measured
using Equation (2.16).

Ant+AX+m
OD(N) :/ Lg(\") dX* (2.16)
An—AX+mg

Here, A, is the nominal wavelength combined with an uncertainty on the camera band
(ms). The term mg represents a random variation drawn from a uniform distribution
with zero mean and a standard deviation equal to the camera’s uncertainty for each
band. Its unit is nm, and A\ denotes half of the camera’s bandwidth.

(IT) To model the digitization function accurately, it is essential to first estimate
the maximum energy expected in a real-world scenario. This value defines the full-
scale range required for the digitization process. To estimate the maximum energy, a
simplified scenario is considered, in which solar irradiance passes through the atmosphere
and is fully reflected by a bare, object-free surface on the Earth’s surface. To determine
the peak spectral energy within the R and NIR wavelength bands, a sliding window
technique is applied. This fixed-size window, matching the camera’s bandwidth, scans
across wavelength ranges centered around the sensor’s nominal R and NIR bands. This
approach accounts for possible variations in the sensor’s central wavelength, ensuring
that all potential spectral positions within the bands are considered. At each position
of the sliding window, the method computes energy by integrating the product of the
solar irradiance curve and the atmospheric transmission curve. This is done under both
humid and dry atmospheric conditions to capture the range of possible environmental
effects. For each configuration, the integrated energy (the area under the resulting curve)
is calculated, and the highest value observed across all sampled intervals is recorded as
the maximum energy for the respective spectral band. This process yields the maximum
energy (Earax) values for R: 22.96 W - m~2 and for NIR: 16.79 W - m~2.

In the final step, the energy reflected from the sheet—resulting from solar irradiance
that passed through the atmosphere, was reflected by the panel, and captured by the
camera sensor (as described by Equation (2.16))—is evaluated and digitized to produce
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a single n-bit digital value per panel. To convert the analog signal into a digital rep-
resentation, the signal is first normalized and scaled to fit within the range of an n-bit
unsigned integer (i.e., from 0 to 2" — 1). This is done using the following equation:

{(ZNbit -1)- analog—‘
Enax

digital = (2.17)
Here, Nz corresponds to the number of bits of the camera. Following that, a best-fit
curve is then fitted to the digitized data points to compute the radiometric compensation
curve, as shown in Fig. 2.48(b).

Furthermore, in real-world applications, multiple uncertainty factors can influence
the radiometric compensation curve. Therefore, variations in solar irradiance (expressed
as n;-(A)), the camera’s nominal wavelength (expressed as mg), and the SNR, which
is selected from 40dB, 50dB, and 60 dB, under different atmospheric conditions (e.g.,
humid-hazy and clear-dry environments) are taken into account when generating the
radiometric compensation method. Here, n,(\) is not considered since the uncertainty
of each weather condition is not available in the dataset.

The three SNR values are selected based on a comprehensive review of the literature
on multispectral cameras [125, 124]. This range is considered optimal for balancing
signal strength and noise levels; therefore, these values are used to model variations in
the camera’s SNR.

Moreover, to assess the impact of these uncertainty factors on the generation of
the radiometric compensation method, a Monte Carlo simulation with 100 iterations is
conducted. The results of this analysis are presented in Fig. 2.48(c).

Afterward, the best-fitted curve is applied to the points under different atmospheric
conditions for each band separately (i.e., Hg(\)), as shown in Fig. 2.49. By testing
polynomial degrees starting from one and comparing their RMSE values, the best-fitted
curves were found to be of polynomial degree one with RMSE reported in Table 2.18. For
higher-degree polynomials, the RMSE did not change significantly. Thus, first-degree
polynomials (p(x) = p;1-x+p2) are employed for the modeling process. Because negative
energy values are not physically meaningful, ps is set to zero, and only the p; coefficients
are provided for each curve. These coefficients are listed in Table 2.19 for both humid
and dry conditions.

As the effects of uncertainty sources are considered, each radiometric compensation
curve has lower and upper bounds for the p; parameter, resulting in two curves per
spectral band. Accounting for both dry and humid atmospheric conditions doubles this
to four curves per band. Since the study focuses on evaluating radiometric compensation
for NDVI measurement using R and NIR bands, the total number of curves increases to
eight per atmosphere.
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Atmosphere & Band | RMSE (in bit)
Red Band - Humid Atm. 216.42
Red Band - Dry Atm. 204.70
NIR Band - Humid Atm. 235.95
NIR Band - Dry Atm. 109.43

TABLE 2.18: RMSE of the best-fitted polynomial curves (degree one) for radiometric com-
pensation curves, with the R and NIR bands specified under different atmospheric conditions

(humid and dry scenarios).

Atmosphere & Band Lower Bound | Upper Bound
(LP1) (UP1)

Red Band - Humid Atm. (HR_P1) 483.43 487.85

Red Band - Dry Atm. (DR_P1) 1017.60 1021.80

NIR Band - Humid Atm. (HNIR_P1) 921.21 929.04

NIR Band - Dry Atm. (DNIR_P1) 1604.40 1608.00

TABLE 2.19: Coefficients of the best-fitted polynomial curves (degree one) for radiometric
compensation curves, where the R and NIR bands have lower and upper values for parameter
P1, specified under different atmospheric conditions (humid and dry scenarios).

2.10.1 Study Area and Data Collection

I actively participated in research at the Agro-Environmental Research Centre 'El Cha-
parrillo’ (IRIAF-CIAG, Ciudad Real, Spain) in September 2024. As a reminder of the
pleasant and friendly working environment, I have included our group photo in Fig.A.1
in AppendixA.1, on page 188. The goal was to conduct a collaborative study involving
advanced technologies, including a UAV equipped with a multispectral camera, and an
NDVI handheld sensor, to validate the performance of the radiometric compensation
method proposed in the above subsection using ground truth data from pistachio nuts
to provide NDVI measurements compatible with the ones acquired by a reference NDVI
measurement instrument. The dataset used in this study will be published soon.

The study was carried out at the experimental station of Finca Entresierra, part of the
Centro de Investigacién Agroambiental ‘El Chaparrillo’ (CIAG-IRIAF), located in Ciu-
dad Real, Spain (38.9570° N, 3.9297° W) (Fig. 2.51a), under weather conditions observed
from September 1st to 10th, 2024, with weather conditions detailed in Fig. 2.50. During
this period, temperatures showed a cooling trend, with averages dropping from 26.03 °C
to 19.33 °C, while humidity decreased from 47.99 % to 33.40 %. Maximum wind speeds
ranged from 11.60ms™~! to 5.22ms !, and solar radiation peaked at 25.27 MJm~2. No
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precipitation was recorded. At the time of data collection, the pistachio trees were in
the late growth stage, nearing harvest. The pistachio variety studied was "Sirora,” widely
cultivated in the Castilla La Mancha region (Spain).

Multispectral Images Ground Truth
and Image Processing v v Dataset

M QGIS
Meg;ﬁgpe @

J

FIGURE 2.51: (a) Pistachio field on September 9, 2024, (b) The AIRcalin SN: 2564 calibration
target by AIRINOV, positioned on the ground within the study area for the radiometric com-
pensation process, (¢) DJI Mavic 3 Multispectral UAV, (d) Software used for image processing,
including Agisoft Metashape, R, and QGIS, (e) CSV files and (f) Orthomosaic TIFF file as the
output of image processing, (g) FieldScout CM 1000 NDVI Meter: A handheld sensor used to
measure the NDVI of the pistachio tree canopy as a ground truth reference [12], (h) Excel file
as the output of ground truth data.

Multispectral imagery was captured using a DJI Mavic 3 Multispectral UAV, with
details in Table 2.20 for the RGB camera and multispectral camera [6], under dry, stable
atmospheric conditions to minimize variability in light intensity. The Mavic 3 camera
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captures images with a 16 bit depth [6] (Fig. 2.51c). To ensure radiometric accuracy, an
ATRcalin SN: 2564 reference panel (Fig. 2.51b) was placed on a uniform surface within
the study area on the ground and imaged per flight for compensation. The panel is
used to convert the raw DNs of all image pixels into reflectance values [135]. This panel
includes a standardized gray reference surface with known reflectance values across four
spectral bands, as detailed in Table 2.21.

Parameter

Mavic 3M RGB Camera
Specification

Mavic 3M Multispectral Camera
Specification

Image Sensor

4/3 CMOS, Effective Pixels: 20 MP

1/2.8-inch CMOS, Effective Pixels: 5
MP

Lens FOV: 84° FOV: 73.91° (61.2° x 48.10°)
Equivalent Focal Length: 24 mm Equivalent Focal Length: 25 mm
Aperture: £/2.8 to /11 Aperture: £/2.0
Focus: 1 m to oo Focus: Fixed Focus

ISO Range 100-6400

Shutter Speed

Electronic Shutter: 8-1/8000 s
Mechanical Shutter: 8-1/2000 s

Electronic Shutter: 1/30 1/12800 s

Max Image Size

52803956 pixels

2592x1944 pixels

Photo Shooting
Modes

Single Shot: 20 MP

Timed: 20 MP

JPEG:
0.7/1/2/3/5/7/10/15/20/30/60 s
JPEG + RAW:
3/5/7/10/15/20/30/60 s

Panorama: 20 MP (original material)

Single Shot: 5 MP
Timelapse: 5 MP
TIFF: 2/3/5/7/10/15/20/30/60 s

Video Resolution

H.264:
4K: 3840x2160@30fps
FHD: 1920x 1080@30fps

H.264

FHD: 1920x1080@30fps
Video Content:
NDVI/GNDVI/NDRE

Max Video Bitrate

4K: 130 Mbps
FHD: 70 Mbps

Stream: 60 Mbps

Supported File
System

exFAT

Image Format

JPEG/DNG (RAW)

TIFF

Video Format

MP4 (MPEG-4 AVC/H.264)

Multispectral Bands

MP4 (MPEG-4 AVC/H.264)

Green (G): 560 £+ 16 nm

Red (R): 650 + 16 nm

Red Edge (RE): 730 &+ 16 nm
Near Infrared (NIR): 860 + 26 nm

Gain Range

1x-32x

TABLE 2.20: Mavic 3M RGB and Multispectral Camera Specifications [6].
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Wavelength Percentage
Green (550 nm) 16.9%
Red (650 nm) 21.2%
Red Edge (730 nm) 26.1%
Near-Infrared (NIR, 860 nm) | 36.1%

TABLE 2.21: Wavelength and Corresponding Reflection Percentages for Different Bands of
the AIRcalin SN: 2564 Reference Target.

2.10.1.1 Ground Truth Data Using NDVI Handheld Sensor

For ground truth measurements, the FieldScout CM 1000 NDVI Meter [7], a handheld
sensor used to measure the NDVI value of crops, is utilized to measure the NDVI of the
pistachio tree canopy (Fig.2.51g). From a metrological perspective, detailed specifica-
tions of the sensor are provided in Table 2.22. The measurement procedure involved an
operator holding the handheld sensor, activating the trigger, and walking in a circular
path around the tree. The sensor continuously recorded NDVI values during the cir-
cuit. Upon completing one full revolution, the trigger was released, thereby finalizing
the NDVI measurement of the tree canopy.

TABLE 2.22: FieldScout CM 1000 NDVI Meter: Features and Specifications [7].

Feature Specification
Measurement Sample | Plant leaves, turf grass canopy
Measurement System | Reflectance of 660 nm and 840 nm light

Measurement Area Conical viewing area between 12 and 72 in
Minimum Distance 12 in (30.5 cm) from the lens

Maximum Distance 72 in (1.22 m), accuracy beyond unknown
Receptor 4 photodiodes (2 ambient, 2 reflected light)

Measurement Units NDVI on a scale of -1 to 1
Measurement Interval | 2 seconds per measurement

Uncertanity +5% of reading
Data Logger 1,350 measurements with GPS, 3,250 without GPS
Battery 2 AAA batteries, approx. 3,000 measurements

The measured ground truth NDVI values for Tree IDs 1 through 10 (Fig. 2.51h) are
reported in the column labeled Sensor (NDVI # Uncertainty) in Table 2.24 for the
four distinct dates: September 2, 4, 6, and 9, 2024. For each measured NDVT value, the
NDVT sensor uncertainty of +5%, as indicated in Table 2.22, is considered.
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2.10.2 Image Acquisition and Processing

1. Flight Planning: The Mavic 3 Multispectral UAV was programmed using DJI
Terra to follow a predefined flight path, ensuring consistent altitude, overlap, and
exposure settings for all captured images.

2. Calibration Target Placement: The AIRINOV panel was placed on the ground
to capture reference images before and after each flight, which were later used for
radiometric compensation.

3. Orthomosaic and Canopy Height Model (CHM) Generation:

The orthomosaics (Fig. 2.51f) and Canopy Height Model (CHM) were generated
using Agisoft Metashape Professional v1.7.6 (Agisoft LLC, St. Petersburg,
Russia), processing multispectral UAV images. Two versions were generated to
assess the impact of radiometric compensation:

e Uncorrected Version: Used the original sensor data without any spectral
adjustments.

e Corrected Version: Applied radiometric calibration based on the AIRI-
NOV reference panel to enhance spectral accuracy, Fig. 2.52a.

(a)

FIGURE 2.52: Multispectral image and NDVT layer of the pistachio field captured on Septem-
ber 2, 2024. (a) Orthomosaic generated from calibrated images shown in QGIS software, (b)
NDVI layer generated using the CHM method based on the orthomosaic shown in Fig. 2.52a.

(a) Image Import and Preprocessing: The first step involved importing
the TIFF-format multispectral images from the UAV sensor into Metashape.

; \FJ) UNIVERSITA DEGLI STUDI
DEL SANNIO ecocveno



Chapter 2. Use of UAV for PA: Evaluating Uncertainty of NDVI Measurement 105

Metashape uses sun sensor data. The sun sensor is a feature of the Mavic 3
Multispectral drone that measures sunlight intensity during flights. It helps
improve the accuracy of multispectral images by compensating for changing
light conditions, which is important for precise agricultural and environmental
analysis. The software performs radiometric calibration automatically using
the ”Calibrate Reflectance” tool, which processes the reference panel images
and the irradiance metadata from the sun sensor to compute spectral com-
pensation factors for each band (Agisoft LLC, 2021). These factors are then
applied to all images prior to generating the orthomosaic [136]. Additionally,
it includes a vignetting compensation modeled by a third-order polynomial to
ensure that the final reflectance values in each pixel of the orthomosaic (and
consequently in the VI maps) remain consistent and comparable across the
entire set of multispectral images.

e In the uncorrected version, the images were used directly without any
modifications.
e In the corrected version, the images were used after scaling them based
on coefficients.
Image Alignment and Point Cloud Generation:
Once the images were imported, feature detection and matching were per-
formed using Agisoft Metashape’s proprietary algorithms. These detect key-
points that are stable under changes in viewpoint and lighting, and compute
local descriptors for each keypoint to enable correspondence detection across
overlapping images. This procedure is conceptually similar to the well-known
Scale-Invariant Feature Transform (SIFT), although Agisoft has implemented
custom algorithms optimized for higher alignment accuracy, according to the
official technical information [137]. To improve geometric precision, cam-
era parameters were optimized, correcting any lens distortions or perspec-
tive shifts. After alignment, a dense point cloud was generated, providing
a detailed 3D representation of the study area, including both terrain and
vegetation.
Digital Surface Model (DSM) and Orthomosaic Generation: The
next step involved generating a Digital Surface Model (DSM) from the dense
point cloud. The DSM represented the elevation of all features in the scene,
including the ground, vegetation, and any structures. Height values were
interpolated, and compensations were applied to enhance model accuracy.
From this data, two distinct multispectral orthomosaics were produced:
e The uncorrected orthomosaic was generated directly from the original
UAV images, preserving the sensor’s raw digital number values.

UNIVERSITA DEGLI STUDI
DEL SANNIO ecocveno



Chapter 2.

Use of UAV for PA: Evaluating Uncertainty of NDVI Measurement 106

(d)

e The corrected orthomosaic was generated from the radiometrically com-

pensated images, where DN values were converted to reflectance in Metashape

using the reference panel, irradiance data from the sun sensor, and a vi-
gnetting compensation modeled by a third-order polynomial. This ad-
justment enhanced the spectral accuracy and reliability of the dataset.

Canopy Height Model (CHM) Creation: To extract the canopy height,
a Digital Terrain Model (DTM) was created by filtering out vegetation and
structures, leaving only the bare ground elevation. The Canopy Height Model
(CHM) was then obtained by subtracting the DTM from the DSM, effectively
isolating the canopy height above ground level, Fig. 2.52b.

This method enables measurement of canopy height variations across the pis-
tachio orchard, providing valuable insights into the spatial distribution of
vegetation. The CHM enables the segmentation of images based on canopy
presence, distinguishing areas with vegetation from those without. This dif-
ferentiation facilitates analysis of vegetation structure and distribution, en-
hancing NDVI analysis.

Irradiance Mapping and Voronoi Diagram Creation: Before extracting
spectral and structural metrics, spatial interpolation of irradiance values was
performed to generate a continuous surface from the discrete UAV image
metadata, following a similar procedure as in [138].

To achieve this:

e The EXIF metadata from the multispectral UAV images was analyzed,
extracting key information, including geographic coordinates (latitude,
longitude) and irradiance values recorded at the moment of image cap-
ture.

e These discrete measurements were then used as seed points for a Voronoi
tessellation, which divided the study area into non-overlapping polygons,
each representing the region closest to a given UAV image.

By assigning the irradiance value of each UAV image to its corresponding
Voronoi polygon, a spatially continuous irradiance raster was generated. This
raster was then resampled to match the resolution of the orthomosaic and
CHM, ensuring consistency across all datasets. The final irradiance map was
exported as a GeoTIFF file and integrated with other remote sensing and GIS
outputs.

Data Extraction and CSV Generation: The next step was to extract
relevant spectral and structural metrics for further analysis. This was done
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using spatial masking and statistical aggregation, ensuring that only mean-
ingful values from tree canopy regions were included in the final dataset. In
the following the step-by-step procedure is listed:

e Tree-Level Statistical Aggregation: A vector shapefile (a shapefile is
a GIS format that stores the location, shape, and attributes of geographic
features) containing tree locations was used to define the sampling areas.
This ensured that the analysis was focused precisely on individual trees
rather than surrounding vegetation or background elements. For each
tree, key statistical metrics (including mean, median, standard deviation,
and variance) were calculated across all available variables: Red, NIR,
CHM, Irradiance, and NDVI. These aggregated values provided a high-
level summary of tree health and structural characteristics. The results
were stored in a CSV file, facilitating further comparative analyses and
interpretations.

e Pixel-Level Data Collection: A more granular approach was taken by
extracting raw pixel values from within each tree canopy. Each pixel was
assigned a Tree ID, along with its precise X and Y geographic coordinates,
allowing for spatially explicit analyses. This pixel-level dataset enabled
a deeper examination of spectral variability within individual trees and
allowed for fine-scale comparisons between different trees or treatment
conditions.

The complete dataset was exported to a separate CSV file (Fig. 2.51e).

All data processing and statistical analyses were performed using R (version 4.2.X,
R Core Team 2019), utilizing the raster, spatstat, and exifr packages for spatial
data manipulation and UAV metadata extraction.

2.10.3 Segmentation and Data Analysis of the NDVI Measurements

2.10.3.1 Calculating NDVI Using Multispectral Images and Sunlight Sensor
Data from the Mavic 3M

The NDVI is calculated from multispectral images using the reflectance values of the
NIR and R spectral bands mentioned in the Mavic 3M white paper [1], as follows:

NIRref - Redref

NDVI =
NIRTef + Redmf

(2.18)
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In this equation, NIR,.; and Red,.; are the reflectance values of the NIR and R bands,
which are unitless ratios and computed as follows [1]:

NIRref _ NIRreflected _ NIRcomera X PNTR X PCampyigr
NIRincident NIRLS PLSNIR
NIR
_ camera X PCamyir X PNIR (219)
NIRLS X PLSy
Redreflected Redcamera PCam
Red,cr = = PNIR X ——2d
ref Redincident RedLS PLSReq
Red, X
_ E€lcamera X PCampeq X DNIR (220)

Redrs X prsp..

where X umerq denotes the signal value from the multispectral camera in a given band,
expressed in DN (representing the raw pixel value from the sensor), while X g represents
the corresponding signal from the sunlight sensor, expressed in units of W -m™2 - nm~!.
The conversion between these values is governed by a conversion parameter, which de-
fines the relationship between the camera and sunlight sensor signal values, as reported
in the white paper [1]. To ensure consistency, both reflected and incident light mea-
surements must be expressed in the same units, and the multispectral camera and sun-
light sensor should possess matching photosensitivity characteristics [1]. Given that
their signals share a linear relationship, conversion can be performed using the formula
PNIR X ppc;% [1]. All spectral bands are calibrated relative to the standard, unitless NIR
band, pnr Rx, employing compensation parameters pogm, for camera signals recorded in
DN format, and prg, for sunlight sensor signals measured in units of W=!-m? - nm.

Then, the NIR band, as an example, is selected to continue the process. First, the
following camera-related values are required: NIRcomera and pcamy,n [1)-

(INIR - IBlackLevel)
NIRE ime
(NTRgain x Mfsgine. )

NIRamera = (2.21)

The input values for N1 Rcqmerq in Equation (2.21), as well as those for the R band, are
extracted from the image metadata, as described in the white paper [1]. The normalized
raw pixel value Inrr and the black-level value Ipj,cirever are obtained by dividing their
original values by 2P*""™ where the bit depth is specified in [EXIF: Bits Per Sample].
Additional parameters such as black level, sensor gain NIRyq,, and exposure time
NIRctime are provided in the [XMP: drone-dji] section of the metadata. These values
are used to compute the image signal NI R qmera, While the corresponding compensation
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parameter pCamyr is taken from [Sensor Gain Adjustment]. For the sunlight sensor,
the values NIR;g and pLSyNigr are used to calculate the product NIRpg x pLSNR,
which is stored as [Irradiance] in the same metadata [1]. The metadata of an image
captured by the Mavic 3 in the R and NIR bands on September 2, 2024, is shown in
Fig. 2.53.

To evaluate the input parameters of Equation (2.21), metadata from 30 randomly
selected multispectral images are analyzed for each day. The analysis shows that most
metadata parameters remain consistent across the images. For parameters that exhibit
variation, their average values are used in the evaluation.

] B C\Windows\System32\cmd exe o X

FIGURE 2.53: Metadata of an image captured by Mavic 3 in the R and NIR bands on Septem-
ber 2, 2024.

Among the parameters, the most significant change is observed in solar irradiance.
The analysis of solar irradiance values (Fig. 2.56) shows that on September 2, the IQR is
significantly higher than on other days, indicating greater variability in irradiance. For
the R band, the IQR on September 2 spans approximately 8000 to 10000 (the camera
operates at a 16-bit depth), while for the NIR band, it ranges from around 6900 to 8200.
Despite this high variability, irradiance values on September 2 remain lower than on the
other days, whereas September 4 exhibits the highest irradiance among all four dates.
This highlights fluctuations in irradiance over time, with distinct variations across the
four days, emphasizing the dynamic nature of solar irradiance and justifying the need for
a radiometric compensation procedure. Fig. 2.54 shows box plots of the Mavic 3 sensor
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gain adjustment for (A) the R band and (B) the NIR band. Additionally, Fig. 2.55
presents the Mavic 3 sensor gain for (A) the R band and (B) the NIR band on these
dates.
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FI1GURE 2.54: Box plot of the Mavic 3 sensor gain adjustment on four different dates: Septem-
ber 2, 4, 6, and 9, 2024 for (A) the R band and (B) the NIR band.
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FI1GURE 2.55: Box plot of the Mavic 3 sensor gain on four different dates: September 2, 4, 6,
and 9, 2024 for (A) the R band and (B) the NIR band.
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FIGURE 2.56: Box plot of solar irradiance recorded on four different dates: September 2, 4, 6,
and 9, 2024. (A) Irradiance values extracted from the R channel of multispectral images and
(B) from the NIR channel.

The MATLAB code that converts the raw pixel values from the images into re-
flectance values, based on the aforementioned information, is provided in Appendix A.1
on page 189.
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2.10.3.2 Analysis of Data Extracted from a Multispectral Image in QGIS
Software
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FIGURE 2.57: Selected pixel on a multispectral orthomosaic image and the extracted NDVI
layer. The pixel is not a leaf, and its NDVI value is 0.44.
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FIGURE 2.58: Selected pixel on a multispectral orthomosaic image and the extracted NDVI
layer. The pixel is not a leaf, and its NDVI value is 0.94.

The output orthomosaic and NDVI TIFF files from Section 2.10.2 are opened in QGIS
Software (Version 3.38) to check whether the points on multispectral layers and NDVI
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layer are related to trees or not. By selecting random pixels and checking their NDVI
values and spatial images at corresponding points, it is revealed that although the CHM
method effectively extracts canopy height data for pistachio trees, not all extracted
NDVT values correspond to the tree’s leaves. For example, the NDVI values of randomly
selected pixels were 0.44 and 0.94, which do not actually correspond to the leaves, as
shown in Figs. 2.57 and 2.58. To ensure that only leaf pixels are considered, an NDVI
threshold range of 0.50 to 0.85 is applied to the NDVI map, generating a new map. This
range is determined through a manual trial-and-error process. However, this threshold
alone is not sufficient to determine the leaf area; therefore, an additional process is
applied to the green band of the multispectral images.

For this, random leaf-covered areas are manually selected, and the corresponding
green band reflectance values are extracted. The analysis reveals that, applying a re-
flectance threshold between 2000 and 40000 in DN (based on the 16-bit depth of the
camera) to the green band, effectively delineates leaf regions. Based on this threshold,
a new green band layer is generated. The extracted green band layer is then multi-
plied pixel-by-pixel with the NDVI-CHM layer, producing an output that emphasizes
vegetated areas while incorporating tree canopy height data.

This integration enhances vegetation differentiation. The R and NIR reflectance
values of the resulting pixels are then extracted for further analysis, and their maps
are shown in Fig. 2.59a for R and Fig. 2.59b for NIR. To better analyze the data,
the histogram and box plot of these two figures are presented in Fig. 2.60 and 2.61.

(a) (B)

FIGURE 2.59: Maps generated by multiplying the selected green layer with the NDVI-CHM
map with (a) the R band and (b) the NIR band on the 2nd of September.
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FIGURE 2.60: Histogram of (a) the R channel and (b) the NIR channel after multiplying the
green map of the leaf area with the NDVI layer, derived from CHM on September 2, 2024.
The analysis was performed using QGIS software with multispectral images acquired by the
Mavic 3.
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FIGURE 2.61: Box plot of (A) the R channel and (B) the NIR channel after multiplying the
green map of the leaf area with the NDVI layer, derived from CHM on September 2, 2024.
The analysis was performed using QGIS software with multispectral images acquired by the
Mayvic 3.

These visualizations demonstrate that both R and NIR reflectance values conform to
a Gaussian distribution pattern and the approximate reflectance ranges for leaf regions
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Date (Sep) R Band NIR Band
Average Std. Deviation Average Std. Deviation
02 4022.77 2147.14 18432.20 3542.96
04 3928.47 3036.01 16732.31 4850.91
06 4272.60 3406.08 16974.90 5129.85
09 4838.18 3703.32 19347.98 5686.32

TABLE 2.23: Mean and standard deviation of R and NIR bands in September.

are identified as 2700-5700 for the R band and 15500-21 500 for the NIR band. This
statistical pattern — characterized by a symmetric, unimodal shape — was consistent
across different acquisition dates, allowing us to define reflectance ranges based on the
mean and standard deviation for each day. Consequently, the reflectance ranges were
subsequently normalized. Since the R and NIR values exhibit a Gaussian distribution,
this pattern could be applied to data from other days as well. Given the Gaussian
distribution of the data, z-score normalization was applied to standardize the DN values
for September 2. For subsequent dates, specific R and NIR value ranges were determined
using the mean and standard deviation computed for each respective day, as detailed in
Table 2.23, in order to adjust the normalized Gaussian pattern for each specific day.

Then, the Pixels whose raw data fall within these defined ranges are extracted from
the spatial dataset for each individual day, ensuring the selection of regions corresponding
to leaf-covered areas.

2.11 Experimental Part and Results

2.11.1 Validation of the Proposed Radiometric Compensation Method
Using In-Field Reflectance Measurements of a Reference Panel

To validate the proposed radiometric compensation method, reflectance measurements
of an AIRINOV reference panel acquired in the field using the UAV Mavic 3M cam-
era—processed according to the specifications outlined in its white paper [1] to convert
raw data into reflectance—are compared with simulation results from the Monte Carlo
model described in Section 2.10. This comparison evaluates the agreement between the
experimentally measured reflectance values of the reference target and the estimated
radiometric compensation curves. Since the measurements were taken under dry atmo-
spheric conditions, the simulated radiometric compensation curves for the R and NIR
bands under dry atmosphere conditions are used for validation. The correspondence
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FIGURE 2.62: Comparison of reflectance measurements from an in-field AIRINOV reference
panel (red points) acquired using the UAV Mavic 3M, alongside simulated radiometric com-
pensation curves under dry atmospheric conditions: (a) R band and (b) NIR band.

between the measured data points from real reference target(shown in red color) and
the simulated curves is illustrated in Fig. 2.62.

2.11.2 Conventional Radiometric Compensation Method

This section evaluates the performance of radiometric compensation performed in Agisoft
Metashape software using the reflection ratio of the real ATIRINOV reference panel and
assesses how closely the corrected NDVI values align with actual ground truth data. To
this end, NDVI values, both before and after compensation, are extracted from the CSV
file as described in Section 2.10.2, and their corresponding box plots are generated and
compared with the ground truth data. As a case study, the NDVI values for Tree 1D 1
(Fig. 2.63(a,b)) and Tree ID 2 (Fig. 2.63(c,d)) on September 2, 4, 6, and 9, 2024, are
compared with the ground truth data. The results indicate that none of the evaluated
NDVI values represented by the blue boxes (spanning from the first quartile, Q1, to
the third quartile, Q3) overlap with the ground truth data, both prior to and following
radiometric compensation. Similarly, this process has been done for all the other trees,
and their box plots show the same results and do not overlap with their respective ground
truth values, regardless of whether the data is compensated or not. These findings
suggest that the radiometric compensated, relying solely on the reference board and
Agisoft Metashape software, did not yield the expected improvements. On the contrary,
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FIGURE 2.63: The blue box plots represent NDVI values derived from Mavic 3 multispectral
images, while the orange box plots show ground truth measurements from a handheld NDVI
sensor. Data were collected from a pistachio orchard at IRIAF-CIAG, Ciudad Real, Spain,
on September 2, 4, 6, and 9, 2024. The plots correspond to two different Tree IDs: (a, b)
represent Tree ID One, with (a) depicting pre-compensation values and (b) post-compensated
values; (¢, d) represent Tree ID Two, with (c) depicting pre-compensated values and (d)
post-compensated values. compensation was performed in Agisoft Metashape software using

reflectance values from the AIRINOV reference board.

the compensation process resulted in a degradation of NDVI measurement accuracy, as
evidenced by an increased spread of outliers across a broader range of values.
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FI1GURE 2.64: The distribution of NDVI values computed from the R and NIR leaf reflectance
within the ROI for Tree ID 1 on September 2, 4, 6, and 9 is presented. These values are eval-
uated using (a) the conventional method in Agisoft Metashape software before compensation,
(b) the conventional method in Agisoft Metashape software after compensation, (¢) applying
the proposed radiometric compensation method under dry-clear atmospheric conditions, and
(d) under humid-hazy atmospheric conditions.

2.11.3 Results of the Radiometric Compensation Method in Dry At-
mosphere

To test the proposed radiometric compensation method, the R and NIR values from
the uncorrected CSV file in Section 2.10.2 are selected within the leaf area range, which
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FI1GURE 2.65: The distribution of NDVI values computed from the R and NIR leaf reflectance
within the ROI for Tree ID 2 on September 2, 4, 6, and 9 is presented. These values are eval-
uated using (a) the conventional method in Agisoft Metashape software before compensation,
(b) the conventional method in Agisoft Metashape software after compensation, (¢) applying
the proposed radiometric compensation method under dry-clear atmospheric conditions, and
(d) under humid-hazy atmospheric conditions.

defines our ROI, as described in Subsection 2.10.3.2. Additionally, their values are
greater than the camera’s black level, which is 3200. The raw data are then converted
into reflectance values for R and NIR separately based on Equation (2.21). Then these
uncorrected leaf reflectance are ready to compensate by proposed radiometric compen-
sation curves as outlined in Section 2.10 for dry atmosphere. Since uncertainty sources
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influence the evaluation of the radiometric compensation method, 8 radiometric com-
pensation curves are generated for dry atmospheric conditions. After applying these
compensation curves to compensate the uncorrected R and NIR values, the NDVI value
is computed based on Equation (2.18). The resulting NDVI remains largely consistent
across different compensation curves, suggesting that uncertainty sources have minimal
impact on the radiometric compensation process.

Therefore, two radiometric compensation curves, utilizing the lower P1 coefficients
for the first-degree polynomial of R and NIR compensation curves under dry, are se-
lected. These curves are applied to the uncorrected R and NIR leaf reflectance values
of all ten pistachio trees in the field, after which their NDVI values are computed. The
median, first, and third quartiles of the computed NDVI values are presented in Ta-
ble 2.24 for dry atmospheric conditions, corresponding to the dates of September 2, 4,
6, and 9. These values are compared to the NDVI ground truth measurements recorded
by the NDVI Handel sensor, accounting for sensor-related uncertainties. The compari-
son demonstrates a high compatibility between the compensated NDVI values and the
ground truth measurements.

As an illustrative example, the distribution of NDVI values, computed from the
R and NIR leaf reflectance (within the ROI) for Tree ID 1(Fig. 2.64) and Tree ID 2
(Fig. 2.65), are presented. The NDVI values before and after compensation of the R and
NIR reflectance in the Agisoft Metashape software are shown in panels (a) and (b), while
the compensated R and NIR values, derived from the proposed radiometric combination
(With P1 representing the lower bounds of polynomial degree one), are presented for
the dry atmosphere (panel (c)).

A direct comparison between panels (b) and (c) reveals that, under dry atmospheric
conditions, the NDVI values within the blue boxes increase by approximately 0.08 to
0.14 after applying the proposed radiometric compensation method. This indicates that
the proposed approach not only ensures the compensated NDVI values closely align with
ground truth data but also outperforms the conventional compensation method used in
Agisoft Metashape software. The illustrative process was performed for all the other
trees, which yielded the same results. These findings highlight the effectiveness of the
proposed radiometric compensation in enhancing the accuracy of NDVI measurements.
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6 0.82 0.67 | 0.92 0.80 £ 0.04 7
9 0.81 0.66 | 0.92 0.78 £ 0.04 7
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9 0.78 0.62 | 0.91 0.78 £ 0.04 7
2 0.85 0.75 | 0.93 0.75 % 0.04 v
. 4 0.83 0.71 | 0.93 0.72 £ 0.04 7
G 0.80 0.66 | 0.91 0.70 £ 0.04 7
9 0.80 0.64 | 0.92 0.74 % 0.04 v
2 0.83 074 | 001 0.75 % 0.04 v
. 4 0.82 0.70 | 0.92 0.78 £ 0.04 7
6 0.80 0.66 | 0.1 0.86 £ 0.04 7
9 0.78 0.64 | 0.90 0.73 £ 0.04 7
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ID | Date | Median | Q1 Q3 (NS‘;{‘IS‘I" yy | Comp?
2 0.86 0.77 | 094 0.78 + 0.04 v

0 i 0.85 0.73 | 0.94 0.78 £ 0.04 7
6 0.82 0.69 | 0.92 0.85 £ 0.04 7
9 0.83 0.68 | 0.92 0.88 £ 0.04 7

TABLE 2.24: Comparison of the compensated NDVI values (using the proposed method)
derived from multispectral images of ten pistachio trees, collected on September 2, 4, 6, and
9, 2024, under dry conditions, with ground truth NDVI measurements. The check mark
indicates compatibility (Comp?) between NDVI values measured by the handheld sensor and
those computed using the proposed method.

2.11.4 Results of the Radiometric Compensation Method in Humid
Atmosphere

As the dataset was collected under dry atmospheric conditions, and it is not feasible to
alter the weather to a humid state for the same field and plant, so a dataset for humid
atmospheric conditions is not available. To evaluate the extent of variation introduced
by the proposed radiometric compensation method under humid conditions on data
obtained under dry atmospheric conditions, a comparative analysis was conducted. The
procedure is the same as subsection 2.11.3. By examining Panels (c) and (d) of Figs. 2.64
and 2.65 for Tree ID 1 and 2, alongside Table 2.25 (humid atmosphere) and Table 2.24
(dry atmosphere), it is evident that for all trees, the compensated NDVI values have
a nearly identical @3, while their Q1 is lower under humid conditions than under dry
conditions. This indicates that the IQR is wider in a humid atmosphere compared to
a dry one. This finding is consistent with expectations, as the P1 coefficient of the
radiometric compensation curve, as shown in Table 2.19, is around twice as large for
dry conditions as for humid conditions. Consequently, the broader IQR observed under
humid conditions can be attributed to this difference in radiometric compensation.
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ID | Date | Median | Q1 Q3 (NS‘;{‘IS‘I" yy | Comp?
2 0.84 0.73 | 0.93 0.80 % 0.04 7
. 4 0.82 0.68 | 0.92 0.86 £ 0.04 7
6 0.77 0.60 | 0.90 0.86 £ 0.04 7
9 0.74 058 | 0.88 0.79 £ 0.04 7
2 0.85 0.73 | 0.93 0.81 % 0.04 v
) 4 0.81 0.66 | 092 0.76 £ 0.04 7
6 0.78 0.61 | 0.1 0.80 £ 0.04 7
9 0.78 0.60 | 0.1 0.78 £ 0.04 7
2 0.85 0.73 | 0.93 0.80 £ 0.04 7
; i 0.80 0.66 | 0.1 0.85 £ 0.04 7
6 0.77 0.62 | 0.90 0.79 £ 0.04 7
9 0.76 0.60 | 0.90 0.85 £ 0.04 7
2 0.86 0.75 | 0.94 0.85 % 0.04 7
A 4 0.82 0.68 | 0.93 0.86 £ 0.04 7
G 0.75 059 | 0.90 0.84 £ 0.04 v
9 0.80 0.64 | 001 0.86 £ 0.04 7
2 0.82 071 | 092 0.86 £ 0.04 7
- i 0.78 0.65 | 0.90 0.80 £ 0.04 7
6 0.73 059 | 087 0.81 % 0.04 7
9 0.67 054 | 0.83 0.78 £ 0.04 7
2 0.83 0.72 | 0.93 0.78 = 0.04 v
; 4 0.81 0.67 | 092 0.73 £ 0.04 7
G 0.79 0.63 | 0.1 0.75 £ 0.04 7
9 0.77 0.61 | 0.89 0.88 £ 0.04 7
2 0.83 072 | 092 0.82 £ 0.04 7
: i 0.79 0.65 | 0.1 0.75 £ 0.04 7
6 0.76 0.60 | 0.89 0.73 £ 0.04 7
9 0.74 0.56 | 0.90 0.78 £ 0.04 7
2 0.82 071 | 0.92 0.75 % 0.04 v
. 4 0.80 0.66 | 0.1 0.72 £ 0.04 7
G 0.77 0.6 | 0.90 0.70 £ 0.04 7
9 0.76 058 | 0.90 0.74 £ 0.04 v
2 0.79 0.69 | 0.90 0.75 % 0.04 v
. i 0.79 0.65 | 0.90 0.78 £ 0.04 7
6 0.76 0.61 | 0.89 0.86 £ 0.04 7
9 0.73 058 | 0.88 0.73 £ 0.04 7

, UNIVERSITA DEGLI STUDI
DEL SANNIO ecocveno



Chapter 2. Use of UAV for PA: Evaluating Uncertainty of NDVI Measurement 124

ID | Date | Median | Q1 Q3 (NS‘;{‘IS‘I" yy | Comp?
2 0.84 0.73 | 0.92 0.78 + 0.04 v

0 4 0.82 0.68 | 0.92 0.78 £ 0.04 7
6 0.79 0.63 | 0.1 0.85 £ 0.04 7
9 0.79 0.63 | 0.91 0.88 £ 0.04 7

TABLE 2.25: Comparison of compensated NDVI values (using the proposed method) from
multispectral images of ten pistachio trees, collected on September 2, 4, 6, and 9, 2024, under
humid conditions, with ground truth NDVI measurements. The check mark indicates compat-
ibility (Comp?) between NDVI values measured by the handheld sensor and those computed
using the proposed method.

2.12 Conclusions and Future Work

In PA, VIs such as NDVI play a vital role in assessing plant health and detecting vari-
ations in vegetation across fields through remote sensing data. However, the accuracy
of these indices can be influenced by factors such as atmospheric conditions and sen-
sor errors, making radiometric compensation essential. This study aims to evaluate the
uncertainty model for NDVI measurement. The first preliminary model models the vari-
ability of the NDVI while examining the variation of wavelength in the camera sensor’s
nominal wavelength as an uncertainty source. The resulting uncertainty values range
from 0.03 to 0.09 for both dry and fresh. Then the model goes close to reality and was
extended by considering OD captured by the multispectral camera within its nominal
wavelength and limited bandwidth. The findings indicate that the nominal wavelength
of the camera sensor is a significant source of uncertainty, with values ranging from ap-
proximately 0.03 to 0.1 for both dry and fresh vegetation. For instance, when the NDVI
of a fresh leaf is determined to be 0.814, accounting for its uncertainty of 0.055, the true
estimate of the NDVI value for the fresh leaf can fall within the range of (0.759,0.869),
which overlaps with the corresponding range for the dry leaf. Consequently, distin-
guishing between dry and fresh leaves based solely on the given NDVI values is not
precise. After that, a workflow has been designed to evaluate the uncertainty associ-
ated with the NDVI by investigating various factors influencing its measurement. This
workflow specifically examines how atmospheric conditions affect solar irradiation and
vegetation reflectance, as captured by a multispectral UAV camera operating in the R
and NIR bands. The research also takes into account OD captured by a multispectral
camera within its variation of nominal working wavelength and limited bandwidth, as
well as camera SNR. Moreover, the variability of solar irradiance and the variability
of the NDVI within the two leaf states are considered. By utilizing MCS, the effect of
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each uncertainty source and its combined impact on the NDVI measurement is evalu-
ated. The Wilcoxon Rank Sum Test is used to examine the overlap of NDVI values
between dry and fresh leaves under diverse air conditions after uncertainty sources are
applied. The results indicate an absence of overlap, so by establishing a threshold, it
is possible to distinguish between fresh and dry leaves under different air conditions.
However, this threshold is changed when the environmental conditions change, and it
is dependent on atmospheric conditions. Furthermore, the results show that, although
uncertainty sources affect the NDVI measurement, the variation of NDVI values (based
on IQR values) is not significant; therefore, NDVI values remain stable. In addition,
the results highlight that the variability of the NDVI within the two considered leaf
states, atmospheric conditions, and the camera sensor’s nominal wavelength as sources
of uncertainty significantly affect NDVI measurements. On the other hand, the other
uncertainty sources, solar standard deviation, and camera SNR have minimal effects
on NDVI measurements. Then, the proposed workflow is finalized with the inclusion
of a radiometric compensation step. A comprehensive radiometric compensation model
was developed and implemented using Permaflect Sheets with varying reflectance values.
The robustness of this approach was evaluated across multiple experimental parameters,
including NDVI uncertainty due to variations in the camera’s nominal wavelength, solar
irradiance, leaf state, camera SNR, and the combined effects of all uncertainty sources.
Results indicate no statistically significant differences in NDVI measurements between
dry-clear and humid-hazy atmospheres. This observed consistency suggests that the
radiometric compensation model effectively mitigates the influence of fluctuating atmo-
spheric conditions, thereby ensuring the precision and reliability of NDVI assessments.
To validate the radiometric compensation method, the study compared the values ob-
tained using the proposed method with those from a real in-field reference panel. Then
the model was applied to multispectral images captured by a UAV over pistachio trees
under dry atmospheric conditions. The compensated NDVTI values were compared with
both the conventional approach used in Agisoft Metashape software and ground truth
data. The findings demonstrate that the proposed radiometric compensation method
significantly enhances the accuracy of NDVI measurements, providing more reliable in-
sights for plant monitoring. However, a limitation of the current study is the lack of
a systematic comparison against alternative radiometric compensation methodologies
using standardized datasets. While Agisoft Metashape was included as a reference tool,
the comparison was limited to the specific dataset collected in this study. Future re-
search should aim to benchmark the proposed method against other state-of-the-art
approaches using publicly available and standardized datasets. This would enable more
comprehensive performance evaluations and enhance the generalizability of the findings.

Additionally, the field validation was carried out in a single agricultural setting—a
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pistachio orchard in Spain—which may constrain the applicability of the results to other
contexts. To strengthen the robustness of the model, future studies should consider
a wider range of agricultural environments and incorporate additional sources of un-
certainty, such as flight parameters (e.g., altitude and image overlap), environmental
conditions (e.g., temperature and humidity), sensor tilt, and other relevant variables.

It is also recommended to evaluate the radiometric compensation method not only on
healthy vegetation but also on stressed or diseased plants, and across various crop types.
Testing the method under a broader range of atmospheric conditions and geographic
regions will further improve its reliability and adaptability.

Moreover, applying the proposed approach to other VIs beyond NDVI would broaden
its applicability and increase its overall value for PA.
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Chapter 3

Use of ML for PA: Plant Disease
Identification

Many PA measurements rely on vegetation reflection from RGB or multispectral imaging
captured by UAV [2], but the quality of these images is affected by variables such as
atmospheric conditions, light exposure, flight parameters, and camera characteristics like
wavelength tolerance and SNR [3]. These factors must be considered when analyzing
UAV-captured images [4].

Classification of RGB or multispectral images is the process of assigning predefined
categories or classes to individual pixels within an image based on the spectral signatures
extracted from different wavelength bands. Before the classification phase, feature ex-
traction is a crucial step. Relevant features, such as the mean, SD, and other statistical
pixel evaluations, provide essential information for constructing a classifier to identify
objects or scenes of interest in the images [139].

In the literature, several studies, such as [140, 141, 142], used ML and DL algorithms
for vegetation disease identification and classification, but the assessment of the vari-
ability of ML /DL identification and classification against several uncertainty sources are
missing. This research objective encompasses capturing RGB images of yellow rust win-
ter wheat diseases using UAVs, analyzing the labeled images for disease identification
and classification, and performing a sensitivity analysis of a trained classification algo-
rithm against several uncertainty sources, such as blurring. The study utilizes MATLAB
image processing tools to extract meaningful features, employing a one-way ANOVA to
identify and prioritize critical features for disease diagnosis, and using ML classifica-
tion approaches for predicting the plant disease level. Additionally, by manipulating
the images and adding non-idealities, including blurring, variations in light conditions,
and noise affecting the images, the sensitivity of the provided classification approach is
assessed. This chapter is structured as follows. Section 3.1 describes the related works.
The proposed workflow and ML algorithms for vegetation disease identification and
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classification are discussed in Section 3.2. Section 3.3 reports preliminary experimental
results. The sensitivity analysis of the provided ML model is assessed in Section 3.4.
The last section highlights the outcome and gives some suggestions.

The content of this chapter has been published at the IEEE International Workshop
on Metrology for Agriculture and Forestry (MetroAgriFor) in 2024 [143].

3.1 Related Work

The study [141] explores the effectiveness of a low-cost five-band multispectral camera
and a low-altitude UAV platform for automatically detecting wheat yellow rust. The
researchers carefully designed experiments involving the infection of winter wheat with
varying levels of yellow rust fungi. Aerial multispectral images were captured at dif-
ferent developmental stages of the disease using UAVs operating at altitudes of 16-24
meters, providing high-resolution imagery with ground resolutions of 1-1.5 cm/pixel.
Objectives include discriminating healthy and infected plants, selecting optimal spectral
bands and indices, and developing a cost-effective monitoring system for farmland scales.
The researchers developed an automated yellow rust detection system by employing ML
techniques, specifically a random forest classifier, trained on labeled UAV aerial multi-
spectral imagery. The experimental results demonstrated promising performance, with
an average Precision, Recall, and Accuracy of 89.2 %, 89.4 %, and 89.3 %, respectively,
achieved at a diseased stage (45 days after inoculation). Furthermore, the study iden-
tified the top three Spectral VIs for discriminating between healthy and infected wheat
plants as Radiometric Vegetation Index (RVI), NDVI, and Optimized Soil-Adjusted
Vegetation Index (OSAVI), with NIR and R identified as the top two spectral bands for
effective disease detection.

The study [144] addresses the challenge of detecting yellow rust disease in winter
wheat fields using UAVs and advanced image analysis techniques. By using high-
resolution images captured by UAVs equipped with hyperspectral sensors, the researchers
developed a new computer model based on DL. The model, based on Deep Convolu-
tional Neural Network (DCNN), utilizes multiple Inception-ResNet layers for feature
extraction and optimization. By integrating spatial and spectral information, the model
exhibited strong performance throughout the entire growth cycle, particularly during
the advanced stages of disease progression. The overall accuracy of the proposed model
(85.0 %) surpassed that of the random forest classifier (77.0 %), highlighting the efficacy
of integrating both spectral and spatial information for enhancing the precision of crop
disease detection with high-resolution UAV hyperspectral imagery.
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The study [145] addresses the challenging task of detecting wheat yellow rust severity
using a real-time yellow rust detection algorithm named Efficient Dual Flow UNet (DF-
UNet) to detect different levels of yellow rust based on UAV multispectral images. The
authors introduce a pruning strategy and an SCA (Spatial and Channel Attention)
module to enhance the network’s receptive field and improve category differentiation
efficiency. Building upon these enhancements, a novel DF-UNet architecture is proposed
to tackle the severity classification problem. Through comparative analysis, the proposed
method is evaluated against other state-of-the-art algorithms. Results indicate that the
proposed model achieves an outstanding overall accuracy of 96.9 %, with a total of 8.67
million coefficients utilized in the algorithm and computational operations.

The research [146] showcases the efficacy of a UAV equipped with an aerial multi-
spectral sensor for diagnosing yellow rust infection in spring wheat crops. The captured
multispectral images underwent thorough feature engineering, with disease-centric VIs
and Grey-Level Co-occurrence Matrix (GLCM) texture features crafted to analyze spec-
tral and spatial dimensions, respectively. A ML pipeline, incorporating Support Vector
Machine (SVM), Random Forest (RF), and MLP algorithms, was devised to classify
healthy, mildly infected, and severely infected plots in the field. Additionally, a custom
3-Dimensional Convolutional Neural Network (3DCNN) utilizing feature learning was
employed as an alternative prediction method. The study identified red-edge and NIR
spectral bands as crucial for distinguishing between healthy and severely infected wheat.
Furthermore, specific VIs and texture features were found to be highly correlated with
disease severity. The 3D-CNN-based wheat disease monitoring achieved the accuracy
level 79.0 % for the spectral-spatio-temporal fused data model.

In multispectral imaging, the acquired data is typically represented as a data cube,
where each pixel contains information across multiple spectral bands (spatial dimensions
x spectral bands). RGB imaging captures data in a three-dimensional format where each
pixel contains color information represented by three channels: Red, Green, and Blue.
Usually, low-cost UAVs are equipped with RGB cameras, while UAVs with multispectral
cameras are much more expensive. The novelty of this study lies, firstly, in the utilization
of an RGB camera to evaluate the efficacy of a classifier in distinguishing various levels
of unhealthy and healthy wheat states, a task typically carried out using multispectral
or hyperspectral cameras in PA applications [60, 147]. The adoption of an RGB camera
significantly reduces platform costs. Secondly, a sensitivity analysis of ML algorithms,
which is missing in the literature, is considered for the provided ML classification in this
research.
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RGB Labeling by
Image Expert
Finding ROI Ranking Features :
by Otsu E:e‘;‘:s::‘sg by One-Way :
Thresholding ANOVA
ApplyingML | :

Separating Each
Image into R-G-B-
Gray Channels

FIGURE 3.1: Proposed workflow from labeling images by experts, to extracting features,
applying One-Way ANOVA, and classifying yellow rust wheat disease by using ML.

3.2 Proposed Workflow

The proposed workflow is depicted in Fig. 3.1. Experts label segments of the RGB im-
age into six classes: healthy and five levels of yellow rust infection (15 %, 30 %, 50 %,
60 %, and 100 %). These labeled segments are then selected for manual segmentation
in MATLAB, utilizing 97 images. From each class, 20 % of the images are randomly
selected to form the test set, while the remaining images are allocated to the training
set. Due to the limited number of images, various augmentation techniques are applied
independently to the training and test sets to increase their size. These augmenta-
tion methods include contrast adjustment, blurring, motion blur application, Gaussian
and speckle noise introduction, and image translation. The initial number of images
and the augmentation ratios for each class, corresponding to wheat sickness levels of
100 %, 60 %, 50 %, 30 %, 15 %, and 0 %, are paired sequentially as follows: (36,5), (9,22),
(13,15), (14,14), (16,12), and (9,22). After applying augmentation, each class results in
200 images, yielding a total of 1200 images. Of these, 80 % of images (960) are allocated
for training and validation, while the remaining 20 % (240) are reserved for the test set.
Following augmentation, each image is transformed into a four-channel representation
comprising Grayscale, Green, Blue, and Red channels. Otsu’s thresholding method is
then employed on each channel to delineate ROI corresponding to plant leaves. The per-
formance of the Otsu method for ROI detection under different ambient light conditions
was explored by manually testing the global threshold scaling factor in the range from
0.5 to 2 for four channels of the ROI. This evaluation helped determine how varying
the global threshold affects the detection performance of the ROI, ensuring more robust
detection across varying conditions. After testing, the best ratio was found to be 0.8,
providing the optimal balance for accurate ROI detection. This ensures that the detec-
tion process is less sensitive to changes in brightness or contrast across different scenes.
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FIGURE 3.2: The process of identifying the ROI of the images within the dataset.

Thereafter, the preprocessed images are subjected to feature extraction procedures, en-
compassing statistical metrics such as mean, SD, entropy, and so on in both the time
and frequency domains. To identify the prominent features for distinguishing between
healthy and unhealthy plant states, a one-way ANOVA is conducted on each extracted
feature across all images and classes. Consequently, various ML algorithms are applied
to the extracted features and their corresponding labels in the training set and test set
separately to verify the efficacy of each algorithm in classification tasks. The subsequent
section will provide a detailed presentation of each step in the workflow.

3.3 Preliminary Experimental Results

3.3.1 Dataset

The RGB imagery was acquired from winter wheat fields located in the Ahvaz province
of Iran, utilizing the RGB camera integrated into the DJI-P4 multispectral camera. The
camera offers a resolution of about 2 megapixels. Image acquisition occurred over the
period from September 11th to September 15th, 2023. The image acquisition process
was performed at altitudes ranging from 28 to 31 meters. Expert annotators labeled
the images using two distinct methodologies: one subset was annotated using bounding
box coordinates, while the remaining images were labeled based on segmented areas.
Each bounding box is defined by five parameters: the class label (wheat sickness level),
the normalized x- and y-coordinates of the box’s center, and its width and height, both
relative to the image dimensions. Segmented areas are represented by the class label
and a series of normalized (x, y) coordinates outlining the polygon boundary (refer to
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FiGURE 3.3: Top 20 features ranked by F-value of the One-way ANOVA for each channel of
the RGB image and its grayscale one.

Fig. 3.2). In some cases, the background is manually removed in the bounding box
format.

3.3.2 Features ranking

In this study, a comprehensive suite of statistical analyses was employed, encompassing
measures such as the mean, SD, variance, entropy, skewness, kurtosis, median, and
various percentiles (25th, 50th, and 75th) applied to a single channel of ROI images in
both the time and frequency domains. Subsequently, a one-way ANOVA was conducted
for each of these features across all images within all classes. The resulting F-values were
then sorted to identify the top 20 features, which were depicted in Fig. 3.3. During the
analysis, as shown in Fig. 3.3, particular emphasis was placed on the significance of the
Red, Gray, and Green channels, which were deemed as the most crucial for discerning
patterns within the data. Conversely, the Blue channel exhibited comparatively lower
sensitivity in capturing variations among the image classes.

3.3.3 Classification performance

Utilizing the Classification Learner application within MATLAB, a comprehensive ex-
ploration of ML classification algorithms was conducted on both training and testing
dataset features. Regarding datasets, initially, the images are separated into test and
training/validation sets; the test set is completely independent from the training set.
20% of the images are used for testing (240 images), while the remaining are used
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for training/validation (960 images). Then training/validation images are subjected
to a 5-fold cross-validation procedure to avoid overfitting. In this setup, 80 % of the
training/validation images are used for training (768 images), and 20 % (192 images) is
reserved for validation. This strategy was employed to reduce the risk of overfitting and
to improve the robustness of the model. In addition, the classification model did not see
the images used for testing during training. Among ML classification algorithms, the
Standard Neural Network algorithm exhibited notably high accuracy, achieving 88.5 %
on the training set. Conversely, the algorithm yielded lower accuracy, reaching 76.2 %
after the evaluation of the test set. The Standard Neural Network utilized in this study
is a Wide Neural Network based on the Feedforward Neural Network architecture. This
architecture consists of one input layer, one fully connected hidden layer, and one out-
put layer. The single hidden layer contains 100 neurons. Normalization layers were
implemented to standardize the input data, enhancing the model’s performance by en-
suring that the data is centered and scaled appropriately. The lower accuracy of the
Wide Neural Network on the test set prompted its exclusion from further consideration.
Following a comprehensive evaluation, the Linear Discriminant Analysis (LDA) algo-
rithm was identified as the preferred model, demonstrating superior performance with
an accuracy of 85.0% on the test set. Consequently, it was selected as the preferred
classification approach for detecting yellow rust disease. LDA is a supervised learning
algorithm for classification tasks in ML. It identifies a linear combination of features
to separate classes, projecting data onto a lower-dimensional space to maximize class
separation based on assumptions of Gaussian distribution, equal covariance matrices,
and linear separability [148, 149, 150]. The LDA algorithm works as follows: (1) data
preparation: LDA requires labeled data, where each data point is associated with a class
label, (2) compute the mean of each class, (3) compute the total mean of all data, (4)
calculate the between-class scatter matrix Sy, which represents the spread between dif-
ferent classes. Sy is computed as the sum of the outer products of the differences between
class mean vectors and the overall mean vector, (5) computes the within-class scatter
matrix Sy, which represents the spread of data within each class. S5, is computed as the
sum of scatter matrices of individual classes, (6) compute eigenvectors and eigenvalues:
solve the generalized eigenvalue problem S,;'S,w = Aw, where w is the eigenvector and
A is the eigenvalue. The eigenvectors represent the directions (linear discriminants) that
maximize the separation between classes, and the eigenvalues represent the amount of
variance explained by each discriminant. (7) Select discriminants: sorting eigenvectors
in descending order according to their corresponding eigenvalues. These eigenvectors de-
fine the subspace onto which the data will be projected. The first k eigenvectors are then
used as a lower-dimensional space, (8) projecting the original data onto the subspace
spanned by the selected eigenvectors. This results in a lower-dimensional representation

UNIVERSITA DEGLI STUDI
DEL SANNIO ecocveno




Chapter 3. Use of ML for PA: Plant Disease Identification 134

TABLE 3.1: The performance analysis of the LDA algorithm while applying it to the test
dataset.

ML Algorithm Accuracy (Validation) | Accuracy (Test)
Linear Discriminant Analysis 85.5% 85.0%
Standard Neural Network 88.5% 76.2%

of the data while maximizing class separability, and (9) classification: after dimensional-
ity reduction, standard classification algorithms (e.g., nearest neighbors, support vector
machines) can be applied to the transformed data for classification tasks [151, 152].

Table 3.1 presents the accuracy scores based on Equation (3.1) attained during val-
idation and testing for both the Standard Neural Network and LDA algorithms. Addi-
tionally, Fig. 3.4 illustrates the confusion matrix resulting from applying the Standard
Neural Network algorithm to the training dataset, while Fig. 3.5 depicts the confusion
matrix derived from executing the LDA algorithm on the test dataset. Further analysis
of the LDA algorithm’s performance based on the test dataset’s confusion matrix reveals
precision Equation (3.2), recall Equation (3.3), F1 values Equation (3.4), for each class
and Macro Fl-score Equation (3.5) as the average of F1 values along with the other
respective averages, as detailed in Table 3.2. The experimental results demonstrated
promising performance, with an average Precision, Recall, and F1 of 84.9 %, 85.0 %, and
84.8 %, respectively, achieved at the diseased state levels.

Model 2 (Wide Neural Network)
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FiGURE 3.4: The confusion matrix resulting from applying the Standard Neural Network
algorithm to the training dataset.
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Model 3 (Linear Discriminant)

0 N 2.5% 7.5% 12.5% 22.5%

10.0%

-

2.5% ENRY 5.0% 2.5%

32.5%

N

5.0% [17.5% 2.5% | 7.5%

True Class

12.5%

w

12.5% &

4 5.0% | 5.0% [E[ORFZS 10.0%

(&)}

2.5% 9

0 1 2 3 4 5
Predicted Class

FIGURE 3.5: The confusion matrix resulting from applying the LDA algorithm to the test
dataset.
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TABLE 3.2: The detailed performance analysis of the LDA algorithm while applying it to the
test dataset with different sickness levels.

Sickness % | Class | Precision | Recall F1

100 0 88.6% 77.5% 82.7%

60 1 81.8% 90.0% 85.7%

50 2 75.0% 67.5% 71.1%

30 3 85.4% 87.5% | 86.4%

15 4 90.0% 90.0% | 90.0%

0 5 88.6% 97.5% | 92.9%
Average - 84.9% 85.0% | 84.8%

3.4 Sensitivity Analysis of the LDA Model

To assess the model’s sensitivity, various sources of uncertainty, including blurring, vary-
ing light conditions, contrast adjustments, Gaussian noise, speckle noise, and their com-
binations, were introduced to the test dataset 100 times repeatedly. Random numbers
were drawn from a uniform distribution to induce variation in the parameters of these
uncertainty sources. FEach image in the test set is processed individually, with various
uncertainty sources applied systematically. For instance, in the case of blurring, the SD
is randomly varied between 0.0001 and 1.1 during each iteration. For speckle noise, the
variance is randomly adjusted from 0 to 0.038. In terms of light conditions, brightness
is altered within a range of —0.25 to 0.35. The variance for Gaussian noise is modified
from 0 to 0.025, while random values are varied between 0.6 to 2.3 for contrast. Addi-
tionally, when considering the combination of all uncertainty sources, all parameters are
simultaneously altered to evaluate their collective impact on the images.

The accuracy results of the LDA model after 100 iterations are presented in Table 3.3.
Statistical parameters such as the Min, Max, mean, MED, Q1, Q3, and IQR are used
to assess the accuracy of the model. These metrics are utilized because the accuracy
result of the model does not follow a Gaussian distribution. According to the box
plot of the model sensitivity versus various uncertainty sources, which is depicted in
Fig. 3.6, a higher Med value indicates greater accuracy of the model, while a higher IQR
value illustrates higher variability of the model to specific noise. Among the various
uncertainty sources, the Med accuracy value in the presence of blurring, measured at
85.8 %, surpasses that of speckle noise, which stands at 84.6 %, as well as all other noise
types. This indicates that the model’s sensitivity to uncertainty sources when subjected
to blurring noise and speckle noise is more robust than the others. While the model’s
accuracy is highest with blurring followed by speckle noise, the IQR of the model under
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TABLE 3.3: Statistical parameters: Min, Max, Mean, MED, First and Third Quartiles (Q1,
Q3), and IQR of LDA model accuracy resulting from the model sensitivity analysis with various

uncertainty sources.

Uncertainty Source | Min | Max | Mean | Med Q1 Q3 IQR
Blurring 52.5% | 89.2% | 78.3% | 85.8% | 67.3% | 87.9% | 20.6%
Contrast 31.7% | 88.8% | 62.0% | 58.8% | 47.7% | 76.9% | 29.2%

Gussie Noise 71.3% | 89.2% | 79.1% | 77.9% | 74.8% | 83.5% | 8.8%
Light Condition 40.0% | 87.9% | 69.8% | 72.9% | 57.5% | 80.8% | 23.3%
Speckel Noise 79.2% | 87.9% | 84.6% | 84.6% | 83.5% | 85.8% | 2.3%
Combination All 12.9% | 85.8% | 47.1% | 47.7% | 36.3% | 58.5% | 22.3%
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FIGURE 3.6: Sensitivity analysis of the LDA model while applying various uncertainty sources.

blurring conditions (20.6 %) far exceeds that under speckle noise (2.3 %), indicating
higher sensitivity of the model to blurring uncertainty source compared to speckle noise.
Moreover, the model exhibits the lowest sensitivity to speckle noise in comparison to

other noise types.

Analysis of box plots and IQRs reveals that contrast significantly impacts model

variability, followed by lighting conditions and blurring noise.

Gaussian and speckle

noise showed lower variability individually and collectively. The model was more robust
to speckle noise, with a higher median accuracy and lower IQR, while it was highly
sensitive to contrast noise, exhibiting a lower median accuracy and higher IQR.
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3.5 Conclusions and Future Work

This study develops a workflow for detecting yellow rust wheat disease using RGB im-
ages captured by UAVs from a winter wheat farm. The proposed approach involved
extracting meaningful features from the images using image processing tools, conduct-
ing a one-way ANOVA to identify critical features, and applying ML algorithms for
disease classification. Based on the one-way ANOVA analysis of features extracted from
the Red, Green, and Blue channels of RGB images and their grayscale ones in discerning
patterns, the Blue channel has less effect in discerning the yellow rust pattern disease.

Moreover, the findings revealed that the LDA algorithm exhibited superior perfor-
mance, with an accuracy of 85.0 % on the test set with six classes, outperforming other
ML algorithms. Consequently, the LDA algorithm was selected as the preferred model
for yellow rust disease classification. However, its accuracy is lower compared to UAV
hyperspectral images used for binary classification of the same disease, as reported in
the paper [60], with accuracies ranging from 92 % to 96 %, the use of an RGB camera
significantly reduces platform costs.

The ML algorithms work on a dataset which was carefully partitioned to ensure that
the test set remained fully independent from the training/validation set, with 5-fold
cross-validation applied to the training data to reduce overfitting and improve robustness.
Nevertheless, the dataset remains limited in size and diversity, which may affect the
model’s generalizability to different environments or wheat varieties.

To address this, future work will focus on expanding the dataset with images from
multiple growing conditions, crop types, and locations to enhance the model’s general-
izability.

Also, this study conducted a sensitivity analysis of the ML algorithm, which was
missed in the literature, to assess its robustness against uncertainties, such as blurring
and other noises affecting the acquired images. The model showed strong resilience to
speckle noise but high sensitivity to contrast noise. To address this, future studies will in-
corporate radiometric compensation for the RGB channels using target reference points
to manage lighting variations. Additionally, the segmentation process could potentially
be automated through the utilization of ML or DL algorithms, thereby enhancing effi-
ciency and reducing manual intervention. Furthermore, future work will focus on ana-
lyzing the performance of the ML algorithm with a reduced number of features. Finally,
this research offers valuable insights for crop management, supporting sustainable and
efficient farming practices. Future research can explore other sources of uncertainty and
assess the scalability of the workflow for different crop diseases and environments.
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Chapter 4

Use of 10T for PA: Monitoring
the Health State of Trees

Taking care of trees and plants is now more critical than ever due to factors like overpop-
ulation, rapid urbanization, and changes in the environment [153]. Trees are not only
essential for maintaining the environment, but they also greatly influence human activ-
ities. Having healthy trees brings various advantages to humans, such as stopping soil
erosion, absorbing carbon dioxide, purifying the air, reducing noise pollution, filtering
dust, and improving the design of landscapes. Essentially, trees help to alleviate global
warming by absorbing greenhouse gases [154, 155, 8]. Furthermore, in several cities, mu-
nicipal governments take measures to manage and protect heritage trees from chronically
stressful regimes in terms of harsh microclimate and soil conditions [156, 8]. Thus, it is
essential to monitor them for a long time to assess the natural and human causes of tree
losses to make recommendations for future heritage tree conservation [156, 8]. A highly
effective system for assessing the health of trees is crucial for monitoring and providing
early warnings of potential issues. The conventional approaches to evaluating tree health
entail expert-driven manual evaluations that are constrained in terms of the temporal
intervals and frequency of assessments, and they demand substantial labor input from
tree specialists, which is not very efficient. With the advancement of technology, diverse
ways of monitoring tree health based on remote sensing have been suggested. These new
ways could overcome the limits of manual methods [154, §].

Remote sensing refers to using several technologies to monitor and measure physical
quantities from a target. This technique is used in various fields like land surveying, ge-
ography, and other earth sciences, as well as in the [oT realm. In IoT, a " Thing” refers
to any device embedding sensors capable of collecting and transmitting data across the
Internet network without the need for manual intervention [157, 8]. This research aims
to present the architecture of an IoT system for the health state monitoring of trees. In
particular, the physical layer and the adopted sensors will be described. In the following,
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a brief review of systems for environmental monitoring, the architecture and the metro-
logical characteristics of the adopted sensor nodes and the gateway architecture, and the
implementation of this system are presented. Finally, the last part summarizes some
relevant topics discussed in the research and describes future activities in the field [8].
The content of this chapter has been published at the IEEE 7th International Conference
on Internet of Things and Applications (IoT) in 2023 [8].

4.1 Related Work

The authors in [153] introduce an IoT-based framework for intelligent urban tree man-
agement. This system monitors various tree attributes such as air quality, solar radi-
ation, and acoustic pollution to optimize urban planning and afforestation strategies.
The architecture comprises three segments: (i) Sensor Node, (ii) Cloud Integration, and
(iii) User Experience. It employs a range of sensors connected to a Raspberry Pi 3.
The Raspberry Pi 3 is linked to the Internet through an Arduino Shield with Narrow-
Band IoT (NB-IoT) and LTE (Long Term Evolution) Cat-M1 modules. Sensors include
DHT22 for temperature and relative humidity, MQ135 for gas, YL-69 for moisture, Light
Dependent Resistor (LDR), SEN-9198 for vibration, air quality, sound, and MCP3008
for 8-channel analog input as the Raspberry Pi does not directly support analog inputs.
Each tree has specialized NB-IoT and LTE module sensors for direct communication
with an IoT cloud server. Data is analyzed, categorized, and sent to a mobile app
via IBM Cloud API for easy access and action. While this approach focuses on urban
monitoring, another direction has been explored by Trinovita et al. [158] introduces an
ToT-based framework for autonomous plant fertilization and irrigation. This system is
controllable and observable via an Android-based smartphone interface. Powered by
solar photovoltaic energy, the framework is constructed using specific components, in-
cluding a 100 Wp solar module, a 30 A solar charge controller, a deep-cycle battery,
an Arduino Microcontroller Unit (MCU), an ESP8266WiFi module, a DHT11 sensor
for air temperature and relative humidity, a soil moisture sensor, and a 12 V DC elec-
tric solenoid valve. In practice, for instance, when the soil moisture sensor detects dry
soil and the air temperature sensor indicates cool atmospheric conditions, the MCU
activates the electric solenoid valve. This results in the discharge of water containing
fertilizer onto the soil until an adequate moisture level is achieved. The research outlined
in [159] introduced an integrated framework that merges the IoT with crop cultivation,
employing cloud computing to oversee crop growth. This architectural model consists of
three layers: (i) the physical layer, (ii) the IoT layer, and (iii) the com-op layer, offering
comprehensive management for monitoring and automation. The physical layer acts as
the automation hub, controlling the smart agricultural system using various sensors like
soil moisture, temperature, motion detection, water level, and photosynthesis sensors.
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The IoT layer collects data from the physical layer and forwards it to the com-op layer
for processing. Within the com-op layer, security protocols are applied for secure data
transmission across cloud services. This layer serves as a data repository for both raw
and processed data. The analyzer processes data, determines subsequent actions, and
executes processes based on the analysis outcomes. This framework provides a robust
system for addressing various agricultural challenges, including quality management and
supply-chain control. Despite their contributions, these previous systems fall short in
terms of integrating multiple physiological and environmental parameters. To address
this gap, the present work introduces a novel system with the following key innovations:
(i) a specialized monitoring system for assessing tree health, encompassing measure-
ments such as trunk variation, sap flow, LAI, and NDVI for evaluating greenness, (ii)
precise monitoring of environmental factors that include not only air relative humidity
and temperature but also various gas concentrations, and (iii) a Low-Power Wide Area
Network (LPWAN) modular design utilizing Long Range (LoRa), technology, which
offers advantages in terms of energy conservation in battery-powered nodes, capacity
enhancement, and cost-effectiveness [160, 8]. LoRa is a spread spectrum modulation
technique derived from chirp spread spectrum (CSS) technology and is the first low-cost
implementation of chirp spread spectrum for commercial use. Long-range wireless ra-
dio frequency technology is a long-range, low-power wireless chipset, often referred to
as LPWAN) suitable for implementing networks of devices requiring wireless connectiv-
ity [161]. LoRa uses bands of radio frequency sub gigahertz free as 433 MHz, 868 MHz
(Europe) and 915 MHz (North America) allowing long-range transmissions (over 10 km in
rural areas, 3km to 5km in highly urbanized areas) with low energy consumption [161].
A comparison of the sensor quantity aspect of the design presented in this research with
the other research referenced in this section can be found in Table 4.1 [8].

TABLE 4.1: Comparison of the design parameters in terms of sensor quantities concerning
state-of-the-art [8] (©) 2023 IEEE.

Quantities\Research This Research In Research [153] | In Research [158] | In Research [159]
Motion Detection Trunk variation Piezo Vibration Sensor - v
Photosynthesis PAR LDR - v
SAP flow v - v
NDVI v -
LAI v - - -
Soil Moisture - v v v
Sound Sensor - v - -
Tree’s stability v
Fire Detection v - - -
Temperature, Humidity v v v v
Other Environmental Node vafl Speed and DIFCCF o Air Flow
Dew Point, Pressure, Precipitation

Measuring Gas Concentration OPC, SO2, NO2, NOx, Alchohol, NH3,

CO, C02, VOC benzene, CO, CO2, etc

5 UNIVERSITA DEGLI STUDI
DEL SANNIO terevens




Chapter 4. Use of IoT for PA: Monitoring the Health State of Trees 142

4.2 The Architecture of Treelogy Systems

According to [162], a comprehensive architecture for an IoT system includes four layers:
(i) the physical layer, (ii) the data exchange layer, (iii) the information integration layer,
and (iv) the application service layer as shown in Fig. 4.1.

@28 End User 8

Application Service Layer

“Cloud T )
.[ Server Cloud @ 1
| &2 Computing pata Storage I
.l Information Integration Layer |
[ Internet [;] )

Local 3

I A Network  Gateway I

i Data Exchange Layer |

Qensore Physical Objects

I 0@5 Microcontroller |
.l Physical Layer |
FIGURE 4.1: General architecture of an IoT-based system.

The physical layer consists of sensor nodes designed to enable the monitoring and
control of physical quantities of objects. These nodes include components such as mi-
crocontrollers, smart sensors that communicate the measurement data to the microcon-
troller, power supplies, and wireless and/or wired transceivers enabling communication
between nodes. The data exchange layer facilitates Internet connectivity for sensor
nodes. It involves collecting data from sensors and transmitting it over the Internet.
This layer can be implemented in two ways: concentrator nodes or gateways connecting
sensor nodes to the Internet, or direct Internet connectivity for sensor nodes. The former
conserves power, suitable for battery-powered nodes. The information integration layer,
also known as the middleware layer, handles the storage, analysis, and processing of large
amounts of data from the data exchange layer. It utilizes technologies like databases,
cloud computing, and big data processing to provide concise and user-friendly informa-
tion to end users. The application service layer offers services that let users manage the
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Node 1 Node 2 Node Camera
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FIGURE 4.2: The proposed Treelogy system (8] (C) 2023 IEEE.

IoT system using the integrated information provided by the integration layer. Users can
view information and give commands to the IoT nodes through this layer. To adapt this
model to the specific requirements of tree health monitoring, the proposed IoT system
for tree health monitoring is based on the above-mentioned four-layer structure. In the
following, the physical and data exchange layers of the tree monitoring system are pre-
sented [8]. The monitored physical quantities refer to internal tree characteristics, tree
stability, visual inspection, and environmental parameters. These factors change over
time and significantly impact tree growth, necessitating continuous monitoring. The
proposed system captures measurements, gathers data, and transmits them to the cloud
server and the Internet. To understand how these layers are implemented in practice,
the physical layer of the proposed Treelogy system is depicted in Fig. 4.2. This layer
encompasses a gateway and diverse nodes, including tree nodes 1 and 2, a node with
a thermal and panoramic camera, and an environmental node. Each of these nodes is
equipped with an MCU and a LoRa Transceiver. Certain sensors establish communica-
tion with the MCU using serial digital interfaces, while the outputs of other sensors are
presented in analog format. The functioning of the MCU embedded in each sensor node
is as follows: it remains in sleep mode at all times and wakes up when a Real-Time Clock
(RTC) event occurs. This event is generated based on a pre-defined sampling period.
Upon waking up, the MCU acquires measurements using either the built-in nalog-to-
Digital Converter (ADC) for analog sensors or the digital interfaces for digital sensors.
Subsequently, each digital value is scaled based on the sensor’s sensitivity coefficient to
yield a meaningful digital output. Then, the MCU transmits the acquired data to the
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gateway via LoRa, and then returns to sleep mode [8]. The integrated board (B-L72Z-
LRWAN1, STM32L72CZY6TR MCU) compactly accommodates the LoRa, transceiver
chip with its antenna and the MCU and these two are communicated via the Serial
Peripheral Interface (SPI) [8]. The data exchange layer encompasses the wireless sen-
sor network, specifically the implemented LoRa communication protocol that facilitates
data exchange between the sensors and the gateway. This layer also involves the protocol
utilized to transmit on-demand data to the Cloud via the Internet. It means that the
database is on the gateway and the data are available on demand through the Internet
connection [8]. In the following subsections, a hardware implementation of the gateway,
nodes, and a comprehensive overview of each node, along with its associated sensors, is
provided.

4.2.1 Gateway

This serves as the central coordinating unit (or master node) within the distributed
measurement system. Its primary functions include managing communication with sen-
sor nodes and synchronizing system timing. Additionally, it incorporates a database for
efficient data storage and retrieval.

Cloud Server

Wi-Fi / Ethernet

Raspberry Pi

)
USB“
Y
.

Microcontroller
Board

Transceiver

FIGURE 4.3: The architecture of gateway node [8] (©) 2023 IEEE.
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The implementation of the gateway is depicted in Fig. 4.3 and encompasses an MCU,
a LoRa, a transceiver, and a Raspberry Pi. Within this layer, an LoRa Transceiver and
an MCU are utilized to handle the data acquisition, which is transmitted by each node
and sent via USB to the Raspberry Pi module. Raspberry Pi stands as an excellent
choice for an IoT gateway due to its compact size, low power consumption, and ver-
satility. Its small size, coupled with its ability to be powered via a simple micro-USB
cable, renders it highly versatile for deployment across various scenarios. The Raspberry
Pi contains an InfluxDB time-series database and serves Grafana as a web-based appli-
cation for data visualization and user interaction. Additionally, the system maintains
a local table acting as a whitelist, which enumerates the authorized devices permitted
to connect to the network. Each device entry in this table is uniquely identified by an
ID address and is associated with its corresponding measurement type. Moreover, its
diverse connectivity options, encompassing Ethernet, Wi-Fi, and Bluetooth, facilitate
simplifying the connection with a wide array of IoT devices [§].

LoRa L

. Anal
Transceiver __amaog | Dendrometer L=
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Board
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L) | SDL L  hFlow

FIGURE 4.4: The architecture of tree node 1

TABLE 4.2: Tree node 1, sensors’ information (8] (© 2023 IEEE.

Sensor Name Measured Quantities Measurement Range Metrological Characteristics
Dendrometer DBV60 Trunk Increments 60 mm Circumference Resolution: 1 ym
Sensor ExPAR SQ-612-SS Radiation in a range of 400 to 750 nm +5 nm | 0 to 4000 gmol -m=2 - s~ ! +5%

Radiation reflected from surfaces in
Sensor PAR-FAR! 52-411-SS | Red = 389 to 692 nm % 5 nm
NIR = 700 to 750 nm + 5 nm
Sensor SFM-5 Sap Flow Sap Flow Rate -200 to >+41000 cm/hr heat velocity | <3 % or 0.1 cm/hr heat velocity

Red = 0 t087.6W/m?

Y
NIR= 0 to 58 W/m? 5%
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4.2.2 Tree Node 1

Following the definition of the gateway architecture, this node tracks key physiological
parameters of the tree, including trunk circumference, sap flow, and photosynthetically
Photosynthetically Active Radiation (PAR) across different wavelengths. The sensors for
this node are illustrated in Fig. 4.4, encompassing a dendrometer, SAP Flow, PAR, and
NDVI Sensors. Detailed information regarding the measured quantities, measurement
ranges, and metrological characteristics of these sensors can be found in Table 4.2, [8].
Fig. 4.5 depicts the overall schematic of the node, whereas Fig. 4.6 provides a detailed
representation of its circuit diagram.

SAP Flow Sensor DENDROMETER
e
STATION
DIGITAL
ANALOG
o ———
ANALOG
PAR-FAR DIGITAL ePAR
ape/gee - I

FIGURE 4.5: General schematic of Tree Node 1.
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12v ]|

FIGURE 4.6: Circuit diagram of Tree Node 1.
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4.2.2.1 Dendrometer DBVG60

A dendrometer sensor is used to measure plant growth, specifically the circumference or
diameter of trees. High-resolution dendrometers track daily stem size changes, contract-
ing during the day due to transpiration and expanding at night as moisture is absorbed.
The DBV60 Band Dendrometer utilizes a stainless-steel band around a tree to precisely
measure trunk circumference (1 pum resolution) [163]. It provides an analog output in
voltage proportional to the measured trunk circumference [8].

4.2.2.2 ExPAR sensor SQ-612-SS

The energy required for photosynthesis is referred to as PAR. Typically, it is quantified
as photosynthetic photon flux density, expressed in micromoles per square meter per
second (umol - m~2 - s71). The Extended Photosynthetically Active Radiation (ePAR)
sensor has been developed to gauge overall photon intensity across an extended spectrum
spanning from 400 to 750 nm [8]. The sensor generates an analog output that falls within
the interval of 0 to 4000 umol-m=2-s7! of £5 % [164]. This analog output is transmitted
to the MCU [8].

4.2.2.3 PAR-FAR sensor S2-441-SS

Radiation reflected from surfaces, like plant canopies and soil, carries valuable object
information. Reflectance quantifies reflected radiation over incoming radiation on a sur-
face. A common index calculated from reflectance measurements is the NDVI, which
provides a measure of surface greenness. The PAR-FAR sensor S2-441-SS is a distinc-
tive two-channel digital sensor designed for the measurement of reflection within the Red
(389 nm to 692 nm) and Near-InfraRed (NIR) (700 nm to 750 nm) wavelengths [165]. The
measurement range is approximately 0 to 87.6 Wm™2 for Red and 0 to 58 Wm™2 for
NIR, accompanied by a precision of £5%][165]. The PAR-FAR sensor is connected to
the MCU via the SDI-12 (Serial Digital Interface) protocol, a low-power, ASCII-based
communication standard operating at 1200 baud. Specifically designed for environmen-
tal monitoring applications, SDI-12 enables multiple sensors to share a single data line,
reducing wiring complexity. Communication is initiated by the data logger or microcon-
troller, which sends command strings to addressed sensors.

4.2.2.4 SFM-5 Sap Flow sensor

The SFM-5 sap flow sensor functions based on the heat ratio method (HRM), a tech-
nique that estimates sap flow velocity by introducing a heat pulse into the sapwood
and measuring the resulting temperature differentials upstream and downstream of the
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heat source. This method enables the detection of both upward (acropetal) and down-
ward (basipetal) sap movement, making it suitable for monitoring bidirectional flow
dynamics within plant vascular systems. The sensor is designed for application in trees
with stem diameters greater than 1cm, offering minimally invasive installation and re-
liable performance across a range of species. The sensor provides a measurement range
from -200 to >+1000 cm/h of heat velocity, with an accuracy of better than 3% or
+0.1cm/h [166]. This sensor employs the SDI-12 communication protocol to transmit
data to the MCU [8].

LoRa Transceiver

A
SPI Accelerometer
Y
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Board
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FIGURE 4.7: The architecture of tree node 2 [8] (C) 2023 IEEE.
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FIGURE 4.8: General schematic of Tree Node 2.
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4.2.3 Tree Node 2

While Tree Node 1 focuses on internal physiological signals, Tree Node 2 extends the sys-
tem’s capabilities by monitoring the trunk’s inclination and vibration, providing insights
into structural stability. In the setup of Tree node 2, an accelerometer board and an
inclinometer sensor are combined to measure the tree’s stability aspects, including incli-
nation and acceleration, as well as wind-induced acceleration effects (illustrated in Fig.
4.7). For detailed information on the measured quantities, measurement ranges, and
metrological characteristics of these sensors, refer to Table 4.3, [8]. Fig. 4.8 illustrates
the general schematic of this node, while Fig. 4.9 presents its circuit diagram.
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GND

FIGURE 4.9: Circuit diagram of Tree Node 2.
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TABLE 4.3: Tree node 2, sensors’ information (8] (© 2023 IEEE.

Sensor Name Measured Quantities Measurement Range | Metrological Characteristics
Sensor AML Analog MEMS Inclinometer | Angle, slope, or tilt of the object | £10 ° 0.05 °
X-NUCLEO-IKS01A3,
LSM6DSL, Accelerometer Boar

Acceleration +2, +4, £8, +16 g 1.8 mg

4.2.3.1 Sensor Inclinometer

Jewell’s high-precision inclinometer sensor is employed for precise measurement of object
angles, slopes, or tilts within the ranges of £10°. The sensor produces an analog output
that is sent to the MCU. This inclinometer offers an accuracy of 0.05° and operates by
measuring the angle relative to the object’s gravitational orientation [167, 8]. The Dual-
Axis Inclinometer [AML-2-10-V1] (Fig. 4.10a) is designed to detect angular movements
along two orthogonal reference axes, referred to as the X and Y axes. For each axis, the
sensor converts movement into a proportional voltage. By combining the output signals,
the inclination with respect to the XY plane can be calculated (Fig. 4.10b). In addition,
the main characteristic of the inclinometer is mentioned in Table 4.4.

(A) Inclinometer (B) Axes of the inclinometer

FIGURE 4.10: Inclinometer sensor.
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Main Characteristics

Dual-axis functionality Yes

Resolution 0.05°
Measurement range +10°
Temperature coefficient +0.02°/°C
High tolerance to shocks and vibrations | Yes

Operating temperature range —40°C to 85°C
Analog output 0-5V DC
Cable length 1 meter

TABLE 4.4: Specifications of the inclinometer

BT N APPROVED TON NESALE
20000000CQOOGQROQ
LR RN NN

FIGURE 4.11: X-NUCLEO-IKS1A3 board [13].

4.2.3.2 X-NUCLEO-IKS1A3, LSM6DSL, Accelerometer Board

Complementing the inclinometer’s angle measurements, an accelerometer positioned on
a tree’s trunk measures the vibration that affects the tree and its swaying motion, in-
fluenced by factors like weight, flexibility, wood density, and wind force. Variances in
tree size and shape lead to distinct responses to wind [168]. This sensor quantifies
movement within +2, +4, £8, and +16 g-forces (g) with 1.8 mg accuracy [13]. The sen-
sor interfaces with the MCU using the Inter-Integrated Circuit (I2C) protocol [8]. The
X-NUCLEO-IKS01A3 (Fig. 4.11) consists of environmental sensors and Microelectrome-
chanical Systems (MEMS) motion sensors, including a triaxial accelerometer used for

&y R
UNIVERSITA DEGLI STUDI
DEL SANNIO bencvento




Chapter 4. Use of IoT for PA: Monitoring the Health State of Trees 154

vibration monitoring. The algorithm implemented on the board for measuring vibrations
operates by sampling the accelerometer data at a frequency of 10 Hz. For each sample,
the acceleration magnitude is computed using the three spatial components (z, y, z) as
a = \/x% + y2 + z2. These magnitudes are stored in a buffer over a defined time window.
Once the buffer is filled, the algorithm extracts the maximum acceleration value, which
represents the peak vibration intensity during that period. This peak value is then
transmitted to the gateway, providing a concise yet informative representation of the
vibration data while optimizing communication efficiency. The X-NUCLEO-IKS01A3
is compatible with the Arduino Uno R3 connector layout and includes the following
components:

— A three-axis accelerometer and gyroscope [LSM6DSO].
— A three-axis magnetometer [LIS2MDL)].

— A three-axis accelerometer [LIS2DW12].

— A temperature and humidity sensor [HTS221].

— A pressure sensor [LPS22HH].

— A temperature sensor [STTS751].

— The X-NUCLEO-IKS1A3 interfaces with an STM32 microcontroller via I2C pins
[13].

4.2.4 Thermal and camera Node

Beyond physical and structural health, visual and thermal imagery play a crucial role
in detecting early signs of stress. Therefore, a thermal camera for fire detection and
a panoramic camera for the evaluation of the LAI produce substantial data volumes
demanding robust processing. To address this, they interface with a powerful Raspberry
Pi as a data acquisition board. This Raspberry Pi subsequently communicates with a
remote gateway through an LoRatransceiver. The LoRa transceiver establishes USB
connectivity with the Raspberry Pi. Fig. 4.12 illustrates these interconnections. Ta-
ble 4.5 provides a comprehensive overview of quantified attributes, measurement ranges,
and metrological specifications for these sensors [8].
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FIGURE 4.12: The architecture of Cameras’ node [8] (©) 2023 IEEE.

TABLE 4.5: Cameras node, sensors’ information (8] (C) 2023 IEEE.

Sensor Name Measured Quantities Measurement Range Metrological Characteristics
+2 °C (£3.6 °F) or £2 % of reading

Thermal Camera FLIR-AX8 Temperature 10 °C to +150 °C (14 °F to 302 °F) (410 t0 +100 °C at +10 to +35 °C ambient)
. .\ S . . . Resolution:
Panoramic AXIS M3077-PLVE | RGB imaging, video streaming, 360 ° overview Overview: 2016x2016 to 160160

Network Camera and audio streaming

Panorama: 2560x1440 to 192x72

4.2.4.1 Panoramic AXIS M3077-PLVE Network Camera

This digital camera, featuring a 1/1.8” progressive scan RGB CMOS and a 6 MP sen-
sor [169], serves as a powerful tool for capturing high-resolution images of various scenes.
The Camera utilizes a digital Ethernet interface operating over the TCP/IP protocol
suite to facilitate network communication and data transmission. The camera is em-
ployed for the assessment of the LAI of the tree. Its positioning is designed to be situ-
ated on the ground, capturing upward-looking views of the tree canopy. The imagery is
acquired using a Raspberry Pi, and subsequently, the LAT is determined by quantifying
the area covered by leaves in relation to the total area [8]. The LAI is estimated from
RGB imagery using a custom algorithm implemented in Python, utilizing the OpenCV
library. Specifically, the algorithm isolates the green channel from the input image, ap-
plies a predefined intensity threshold, and counts the number of pixels exceeding this
threshold. The LAI is then computed as the ratio, expressed as a percentage, between
the number of green pixels above the threshold and the total number of pixels in the
image. This method provides a simple yet effective approach for assessing vegetation
coverage based on color segmentation techniques.
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4.2.4.2 Thermal Camera FLIR-AXS

This sensor integrates imaging capabilities with continuous temperature monitoring
within a range of —10°C to +150°C, featuring an uncertainty of +2°C and alert func-
tionality [170]. Thermal camera images are captured by the Raspberry Pi, and a tem-
perature threshold is employed to identify occurrences of fires. Upon fire detection, an
event is triggered, and a notification is transmitted using the LoRa, transceiver [8]. The

camera uses a digital Ethernet interface based on the TCP /IP protocol for communica-
tion.
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FIGURE 4.13: The architecture of the environmental node (8] (C) 2023 IEEE.
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TABLE 4.6: Environmental node,

sensors’ information [8] (©) 2023 IEEE.

Sensor Name

Measured Quantities

Measurement Range

Metrological Characteristics

Measuring the particles having

Alphasense OPC-N3 Particle a size from 0.35 t0 40 um Not Specified
Alphasense SO2-A4 Sulfur Dioxide concentration 0 to 50 mg/L +15 pug/L
Alphasense NO2-A4 Nitrogen Dioxide concentration | 0 to 20 mg/L +15 pg/L
Alphasense O3-A4 Ozone concentration 0 to 5 mg/L +5 pg/L
Alphasense CO-A4 Carbon Monoxide concentration | 0 to 500 mg/L +20 pug/L
Alphasense VOC-A4 Volatile Organic Compounds 0 to 190 mg/L +20 pg/L

Alphasense IRC-A1

Carbon Dioxide concentration

0 to 5000 mg/L (IAQ)

Zero repeatability: +10 mg/L
Full-scale repeatability: £50 mg/L

Weather Station Maximet
GMX600

Wind Speed

0.01 m/s to 60 m/s

+ 3% to40 m/s, + 5 % to 60 m/s

Wind Direction 0-359 ° +3°to40m/s, £ 5° to 60 m/s
Temperature -40 °C to +70 °C +0.3°C@20°C

Humidity 0-100 % +2% @20 °C (10 %-90 % RH)
Dew Point -40 °C to +70 °C +0.3°C@20°C

Pressure 300-1100 hPa + 0.5 hPa @ 25 °C

Precipitation 0 to >300 mm/hr Resolution: 0.08 mm

Repeatability: 3 %

4.2.5 Environmental Node

To complete the system’s holistic monitoring approach, this is the most complex node,
designed to monitor environmental conditions and the chemical composition of the air
surrounding the tree. It is equipped with chemical sensors for detecting compounds
in the atmosphere and a weather station to measure temperature, atmospheric pres-
sure, humidity, dew point, wind speed and direction, and precipitation levels. This
node is depicted in Fig. 4.13 and it includes particulate sensors, Sulfur Dioxide (SO2),
Nitrogen Dioxide (NO2), Ozone (03), CO2, Carbon Monoxide (CO), Volatile Organic
Compound (VOC)s sensors, and a weather station. Detailed information about the
quantified measured values, corresponding measurement ranges, and associated metro-
logical specifications for these sensors is presented in Table 4.6, [8]. The output of five
gas sensors (03, CO, NO2, VOC, SO2) is analog voltage and each requires a differen-
tial ADC channel. As the MCU has only three single-ended channels, the DC1012A-A
board with the LTC2499 24-Bit ADC is employed, offering up to eight differential input
channels. Communication between the board and the MCU is facilitated through the
12C interface [8]. Fig. 4.14 illustrates the comprehensive schematic of the environmental
node, while Fig. 4.15 presents a detailed circuit diagram of the node.
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FIGURE 4.14: General schematic of the environmental node.
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FIGURE 4.15: Circuit diagram of the environmental node.
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4.2.5.1 Alphasense OPC-N3, Particulate Sensors

Plants have built-in stress tolerance, but they suffer significant harm from Particulate
Matter (PM) or dust deposition. PM is a mixture of solid particles and liquid droplets
with varying sizes and compositions. This hampers photosynthesis and protein synthesis,
and makes them susceptible to damage from microorganisms and insects. Plants adapt
by responding metabolically, physiologically, biochemically, and genotypically to PM
pollution [171]. The Alphasense OPC-N3 sensor operates on the principle of laser light
scattering. As air is drawn through the sensing chamber, particles suspended in the
air pass through a focused laser beam. These particles scatter the incident light, and
the scattered light is detected by a photodiode placed at a specific angle. The intensity
and pattern of the scattered light are analyzed to estimate the size and concentration
of the particles. By counting the number of scattered light events and classifying them
according to intensity, the sensor determines particle size distribution within a range
of approximately 0.35pm to 40 pm with a measurement range up to 2000 ug m=3 [172].
This technique enables real-time monitoring of PM concentrations in the air. The sensor
communicates with the MCU via the SPI protocol [8].

4.2.5.2 Alphasense SO2-A4

Plant exposure to SO2 generally hampers physiological, morphological, and biochemical
processes. Prolonged exposure disrupts photosynthesis and energy metabolism. How-
ever, low-level SO2 exposure benefits plants as sulfur is essential for growth, aiding in
the synthesis of sulfur-containing amino acids [173]. The Alphasense SO2-A4 sensor is
based on electrochemical (fuel cell) sensing technology. It operates by allowing SO2 gas
to diffuse through a membrane into the sensor’s electrochemical cell, which contains a
working electrode, counter electrode, and reference electrode immersed in an electrolyte.
At the working electrode, SO2 undergoes an oxidation reaction, generating electrons.
A simultaneous reduction reaction occurs at the counter electrode. These electrochem-
ical reactions produce a current directly proportional to the concentration of SO2 in
the surrounding air. The resulting signal is processed and converted into concentration
units using pre-calibrated response factors. This method provides high specificity and
sensitivity for low-concentration SO2 detection. The sensor measures concentrations in
the range of 0 to 50 mg/L, with an accuracy of +15 pg/L [172, 8].

4.2.5.3 Alphasense NO2-A4

This sensor measures NO2 (0—20 mg/L) with £15 pg/L accuracy [174]. While nitrogen
is important for plants, excessive oxides of nitrogen, especially NO2 levels beyond the
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natural background, can harm plant growth and yield. NO2 can harm crop cells di-
rectly and impact growth indirectly by contributing to the formation of ozone (O3) and
aerosols [175, 8]. The Alphasense NO2-A4 sensor operates using electrochemical sensing
principles. It consists of a working electrode, a counter electrode, and a reference elec-
trode immersed in an electrolyte. As nitrogen dioxide gas diffuses into the sensor through
a porous membrane, it undergoes a redox reaction at the working electrode. Specifically,
NO2 is reduced or oxidized depending on the electrode potential, generating a current
proportional to the gas concentration. This current is measured and processed using
calibration data to yield an accurate concentration value. The electrochemical method
enables selective, low-power, and high-sensitivity detection of NO2 in ambient air.

4.2.5.4 Alphasense O3-A4

03, a pale blue gas with a distinct smell, can combine with other pollutants to create
‘Smog’. It damages plants by entering leaves and oxidizing tissue during respiration.
This sensor measures O3 (0—5 mg/L) with +5 ug/L accuracy [176, 8]. The Alphasense
03-A4 sensor is based on electrochemical sensing technology. When ozone gas enters
the sensor through a small membrane, it reaches a liquid electrolyte where it reacts with
the working electrode. This reaction creates a small electrical current. The size of this
current depends on how much ozone is present in the air. The sensor measures this
current and uses it to calculate the ozone concentration. This method provides high
sensitivity and is well-suited for detecting low levels of ozone in the environment.

4.2.5.5 Alphasense CO-A4

CO endangers health by diminishing oxygen to vital organs and contributes to green-
house gases like CO2 and ozone, warming the atmosphere. Trees absorb CO and alleviate
this by purifying the air. This sensor measures CO (0 — 500 mg/L) with 420 ug/L pre-
cision [172, 8]. The sensor operates on the principle of electrochemical detection. CO
diffuses through a gas-permeable membrane into an electrochemical cell containing a
working electrode, counter electrode, and reference electrode immersed in an electrolyte.
At the working electrode, CO undergoes an oxidation reaction, producing electrons that
generate a current proportional to the gas concentration. The resulting electrical signal
is then processed and calibrated to provide a quantitative measure of ambient CO levels.
This method ensures high sensitivity, selectivity, and low power consumption, making it
suitable for real-time environmental monitoring.
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4.2.5.6 Alphasense VOC-A4, Volatile Organic Compounds

VOCs are low-molecular-weight organic chemicals that readily vaporize under ambi-
ent atmospheric conditions. Vegetation, especially trees, naturally emits various VOCs
such as monoterpenes, which serve ecological functions including pollinator attraction,
defense against herbivory, and intra-plant signaling. In the atmosphere, VOCs react
with nitrogen oxides and sunlight to form secondary pollutants such as tropospheric
ozone and secondary organic aerosols, thereby influencing air quality and climate. The
Alphasense VOC-A4 sensor enables the quantification of ambient VOC concentrations
within a measurement range of 0 to 190 mg/L, with a resolution of +20 ng/L [172, 8].
The sensor employs an electrochemical detection mechanism. VOC molecules diffuse
through a gas-permeable membrane into the electrochemical cell, where they interact
with the working electrode. Upon contact, the VOCs undergo redox reactions, typi-
cally oxidation, which generate an electrical current proportional to the concentration
of target gases. The magnitude of this current is measured and translated into gas con-
centration values through calibration algorithms. This technique offers high sensitivity
and selectivity for a range of organic vapors while maintaining low power consumption,
making it suitable for continuous environmental monitoring applications.

4.2.5.7 Alphasense IRC-A1, CO2

CO2 plays a fundamental role in plant physiology as a primary substrate for photosynthe-
sis. However, insufficient ambient CO2 concentrations can impair growth and metabolic
functions in vegetation. The Alphasense TRC-A1 sensor is designed to quantify CO2
concentrations in the range of 0 to 5000 mg/L, with a repeatability of £10mg/L at zero
and +50 mg/L at full-scale output [172, 8]. This sensor is well-suited for applications in-
volving Indoor Air Quality (IAQ), safety, combustion monitoring, and high-CO2 process
control. The sensor operates on the principle of non-dispersive infrared (NDIR) spec-
troscopy, employing a pyroelectric infrared detector. In this method, infrared radiation
emitted from a source passes through a sample chamber containing ambient air. CO2
molecules selectively absorb radiation at specific wavelengths, primarily around 4.26 pm.
The amount of absorbed infrared light is proportional to the CO2 concentration in the
chamber. A pyroelectric detector measures the reduction in transmitted radiation, and
this signal is processed to yield a quantitative concentration value. Unlike typical sen-
sors that output voltage directly, the IRC-A1 produces a current output signal. This is
transmitted via a current loop to a current receiver board, where it is converted into a
voltage using a precision shunt resistor. The analog voltage is then digitized by an ADC
and communicated to the MCU via the I?C protocol. The full signal acquisition and
transmission path is illustrated in Fig. 4.13 [8].
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4.2.5.8 Weather Station Maximet GMX600

Weather station sensors are integral in monitoring and quantifying meteorological pa-
rameters. The MaxiMet GMX600, placed within three dual-louvered radiation shields to
shield it from direct solar radiation, is equipped with sensors that measure various atmo-
spheric variables, including wind speed, wind direction, ambient temperature, relative
humidity, atmospheric pressure, and precipitation [177]. A summary of the measure-
ment ranges and detailed sensor characteristics is provided in Table 4.6. The working
principles of the sensors are as follows:

— Wind Speed and Direction: The system uses an ultrasonic anemometer. It works
by emitting ultrasonic pulses between pairs of transducers. The time it takes for
the pulses to travel between these transducers is used to calculate the wind speed
and direction based on the changes in travel time caused by the wind.

— Ambient Temperature: Temperature is measured using a thermistor, a temperature-
sensitive resistor. As temperature increases or decreases, the resistance of the
thermistor changes, and this change is used to determine the temperature of the
surrounding environment.

— Relative Humidity: A capacitive humidity sensor is employed, which consists of a
hygroscopic material. The dielectric constant of this material changes with mois-
ture content, allowing the sensor to determine the relative humidity based on this
variation.

— Atmospheric Pressure: A piezoresistive barometric pressure sensor is used to mea-
sure the atmospheric pressure. As the air pressure changes, it causes a strain in
the sensor’s material, which is detected as a change in resistance. This resistance
change is proportional to the pressure, allowing accurate pressure measurements.

— Precipitation: The sensor detects precipitation using either a piezoelectric or op-
tical rain sensor. A piezoelectric sensor measures the impact of raindrops on a
surface, converting the mechanical stress from the impact into an electrical signal.
An optical rain sensor uses light to detect the presence of raindrops by measuring
the interruption of a light beam.

— Dew Point: The dew point is the temperature at which air becomes saturated with
moisture and begins to condense. It is calculated from the ambient temperature
and relative humidity data provided by the sensors. The dew point is useful for
predicting weather conditions like fog, frost, or rain.
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Data from these sensors is transmitted to the MCU using the RS232 serial commu-
nication protocol [8]. This completes the multi-node design of the Treelogy system,
which now encompasses internal, structural, visual, and environmental monitoring for a
comprehensive tree health assessment.

4.3 Experimental Evidence

With the full architecture in place, the next step involves validating system functionality
and reliability. All sensor configurations and their connectivity with LoRa and the Rasp-
berry Pi have been tested in the LESIM Lab (Laboratory of Signal and Measurement
Information Processing). Sensors are also calibrated based on their datasheets. LoRa
node has been configured to function with a sampling rate of 5 minutes.

This configuration of the distributed measurement system comprises two fundamental
operational phases: Data Acquisition and Data Transmission & Storage. The system
employs three sensor nodes—Physiology (Tree Node 1), Stability (Tree Node 2), and
Environment (Tree Node 3)—to systematically capture physical field data and critical
parameters essential for assessing tree health and structural stability. The procedural
framework outlining the sequential steps involved in these operations is as follows:

e Gateway Node Initialization: The system is initialized by powering on the
Gateway node, which activates its two fundamental components: the Raspberry
Pi and the B-L072Z-LRWANT1 board.

e Time Synchronization: The Raspberry Pi prompts the user to input the current
date and time to synchronize the system’s internal clock.

e Reset Command: The system remains waiting for the RESET command, which
must be manually executed on the B-L072Z-LRWAN1 board via the designated
reset button.

e Configuration Setup: The Raspberry Pi transmits a configuration table (which
serves as a whitelist of devices that can connect to the network) to the B-L072Z-
LRWANI1 board. This table contains specific instructions for each sensor node,
including;:

— A time offset indicating the point at which measurements should commence.

— The sampling period for data collection.

e Node Activation: Following the transmission of the configuration table, the
sensor nodes (Tree Node 1, Tree Node 2, and Environmental Node) are powered
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on. Each node transmits its unique ID and type to the Gateway node’s B-L072Z-
LRWANTI board.

e Parameter Assignment: The Gateway node assigns the time offset and sam-
pling period to each respective sensor node, based on the configuration table. For
security purposes, this step is executed only if the node’s ID is pre-listed in the
configuration table.

e Measurement Process: Each sensor node waits until the assigned time offset
is reached before initiating the measurement process. Upon completion of each
sampling period, the sensor nodes transmit their recorded data, including their ID
and type, to the Gateway node. The Gateway node logs this data in its database.

e Continuous Monitoring: From this stage onward, the sensor nodes transmit
measurement data periodically to the Gateway node by the established sampling
schedule, ensuring continuous monitoring. The data is then stored in the InfluxDB
database embedded on the Raspberry Pi for efficient time-series data management
and easy retrieval for analysis.

To evaluate the performance of the system and ensure effective alignment between
the experimental data and the expected values, as outlined by the sensor specifications,
a series of experimental tests were conducted. These tests were performed after as-
sembling the nodes within their respective enclosures, which were fabricated using 3D
printing technology. These enclosures serve dual purposes: providing circuit protection
and facilitating the on-site assembly of the nodes. Each node was individually tested,
and the experimental setup involved the following components:

e Analysis of Communication Between Nodes: Each node incorporates multi-
ple communication protocols and data exchange interfaces to facilitate interaction
between different sensors. To verify that all sensors within each node function
correctly, a series of experimental tests was conducted. Specifically, the normal
operation of the distributed measurement system was simulated. Each node is
expected to transmit measurement data from all sensors every 5 minutes. For the
test, a 30-minute measurement interval was selected, resulting in 6 samples per
sensor. The data collected after each measurement cycle was transmitted via the
LoRa network to the Gateway node.

e Data Validation: The collected data are stored in an InfluxDB database, a high-
performance, time-series database optimized for storing and querying timestamped
data. This database is hosted locally on the Raspberry Pi, allowing efficient storage
and retrieval of environmental and sensor measurements.
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To visualize and analyze the data, Grafana—a powerful open-source analytics and
interactive visualization web application—is used. Grafana connects directly to
the InfluxDB database and provides customizable dashboards to display real-time
data through unified charts and graphs. This setup allows users to monitor trends,
detect anomalies, and validate experimental results by comparing them against
reference values or known inputs applied to the system. Figures 4.16 and 4.17
present screenshots of the Grafana dashboards used during the experiments to
monitor various parameters, including tilt, vibration, growth increment, SAP flow,
wind speed, precipitation, CO2, CO, NO2, and OX concentration (where
denotes the combined concentration of O3 and NO2).

Home > Dashboards
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FIGURE 4.16: The Grafana dashboard displays real-time sensor data from the monitoring
system, including tilt, vibration, growth increment, and SAP flow.
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FIGURE 4.17: The Grafana dashboard displays real-time sensor data from the monitoring
system, including wind speed, precipitation, CO2, CO, NO2, and OX concentration.

e Power Consumption Analysis: To evaluate the power consumption of each
node, a stabilized power supply and a multimeter in ammeter configuration were
used to measure the average current absorbed by each node. This information
is crucial for estimating the operating duration of the node before the battery is
depleted. Furthermore, based on the consumption data, an analysis was performed
to assist in selecting an appropriate battery that would support the desired uptime
of each node.

4.3.1 Stability Node Analysis

The stability node is summarized by the following signals:

Input: 12V A.D. power supply

Output: X-axis inclination

Output: Y-axis inclination

Output: Vibration
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The experiment involves two distinct rest states, in which the sensor remains inactive
and unperturbed externally, and one forcing state. During the forcing phase, the node
was subjected to tilting along different axes at various angles within a 10-20 minute
interval.

5 : T T . . T
:

(o]

— (o]

& o 8

2or o © T

= o)
(o]

0 5 10 15 20 25 30 35

Minutes

FIGURE 4.18: Test inclination, Tilts along X and Y axes.
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FIGURE 4.19: Test vibration.
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As illustrated in Fig. 4.18, the stress response of the node within the specified range
is evident. A similar procedure was conducted for the vibration measurements in units
of g, as presented in Fig. 4.19. The g-value is calculated from a buffer containing the
magnitudes of several tri-axial acceleration measurements. In this case, two distinct
states are observed: a forcing state, lasting from 10 to 20 minutes, and a rest state
during the remaining period. As shown, during the forcing phase (induced by shaking
the node), the sensor records an acceleration value approximately equal to the gravita-
tional acceleration, 9.81 m/s?. Conversely, during the rest intervals, the sensor output
is essentially zero, indicating no significant motion or acceleration.

Power Supply Agilent E3631A

GND 12 Vv
DUT

FIGURE 4.20: Setup for Power Consumption Measurement.

Fig 4.20 illustrates the setup for measuring the current consumption of the node.
This configuration, along with the following procedure, is applied consistently across
all nodes. The approach to obtaining a reliable estimate of current consumption and,
consequently, the battery life is as follows:

1. The 300-second sampling period is divided into two intervals: during one interval,
the node operates in the MEASUREMENT configuration, while in the other, it is
in the REST state.

2. The extreme values (minimum and maximum) of the current absorbed by the
node are recorded, both during the MEASUREMENT and REST states, using
the appropriate functionality of the multimeter.
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3. The arithmetic mean of the two extreme values is calculated to obtain a reference
current for each of the two states.

4. The final step involves calculating the weighted average current, with the time
intervals of each state serving as weights.

Table 4.7 provides current consumption data for the Stability Node in MEASURE
and REST states. The difference in power consumption between the MEASUREMENT
and REST states is not significantly large, as this node is equipped with only two sensors.
However, for other nodes with additional sensors, the difference in power consumption
is greater.

TABLE 4.7: Power consumption during different states (Stability Node).

MEASURE REST

MIN [mA] 65.3231  60.2391
MAX [mA] 76.5883  63.8147
TIME [s] 90 210
AVERAGE [mA] 70.955 62.027
AVERAGE WEIGHTED [mA] 64.71 + 0.04

Fig. 4.21 illustrates the operational duration of the node as a function of the sampling
period, given a battery capacity of 2.3 Ah. To introduce an additional degree of freedom,
a graph was generated where the battery lifespan is expressed as a function of both the
sampling period and the battery capacity, as shown in Fig. 4.22.

As expected, increasing the battery capacity directly extends the operational dura-
tion of the node. However, an interesting observation is that increasing the sampling
period does not result in a significantly large gain in operational duration, assuming the
same battery capacity.
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FIGURE 4.21: Operational Duration of a 2.3 Ah Battery.
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4.3.2 Analysis Data Acquisition of Physiology Node

The physiological monitoring of the physiology node is characterized by the following

signals:

e Input: 12V A.D. power supply.
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e Output - Dendrometer: Measurement of trunk circumference growth.
e Output - ePAR: Photosynthetically Active Radiation (PAR) measurement.

e Output - PAR-FAR: Ratio of PAR to FAR radiation and the percentage of FAR
in the total absorbed light radiation.

e Output - Sap Flow: Total sap flow, along with the internal and external sap
flow density.

The simulation consistently includes two distinct states: rest and stress. As evident
from Fig. 4.23, dendrometer sensor forcing is applied during the 10— 20 minute interval,
increasing approximately 22 mm.
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FIGURE 4.23: Test dendrometer.
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FIGURE 4.24: Test ePAR.

Regarding the ePAR sensor test, to simulate light radiation from the external en-
vironment, the sensor was exposed to artificial light, specifically the flash of a mobile
phone. The rest states were achieved by isolating the sensor from light exposure, result-
ing in a significantly lower detected radiation level, as shown in Fig. 4.24.

Fig. 4.25a-4.25b illustrate the output of the PAR-FAR sensor under forced conditions
using two different light sources: white light (mobile phone flash) and yellow light (a
standard office lamp).
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FIGURE 4.25: Test PAR-FAR Flow.
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The variation in light sources resulted in distinct sensor responses. By highlighting
the outputs in red for white light and in blue for yellow light, it is evident that white
light exhibits a significantly higher PAR content compared to FAR, whereas the opposite
is observed for yellow light.
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FIGURE 4.26: Test SAP Flow.

Figs. 4.26a—4.26b present the results of the SAP-Flow sensor tests. Since a real tree
was not available, the applied force was simulated by wrapping the sensor probes with
fingers, thereby mimicking the sap flow. Notably, negative values are also observed in
the results. The sign of the measurement is a critical parameter, as it indicates the
direction of sap flow within the Xylem (Xylem is the part of a plant that carries water
from the roots to the leaves). Positive values correspond to the flow towards the roots,
while negative values indicate movement in the opposite direction. Two distinct sap
flow densities can be measured: in and out, depending on the pair of thermistors being
analyzed. Specifically, the in density represents the flow directed towards the heartwood
of the trunk, whereas the out density corresponds to the flow towards the outer layers.

Additionally, for this node, an estimation of power consumption and an analysis of
battery lifespan were conducted (Table. 4.8).

By analyzing the table and comparing it with the data from the Stability Node, it is
immediately evident that this node exhibits a greater discrepancy in current consumption
between the MEASURE and REST states. Additionally, the duration of the MEASURE
state is significantly longer. As a result, this node consumes more than twice the current
of the Stability Node, leading to a considerably shorter battery life. The following graph
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TABLE 4.8: Current Consumption Measurements for Different States

MEASURE REST

MIN [mA] 59.975,3  59.964,2
MAX [mA] 286.544,1  60.458,7
TIME [s] 215 85
AVERAGE [mA] 173.260 60.211
AVERAGE WEIGHTED [mA] 171.231 £ 0.06

(Fig. 4.27) illustrates the operational duration of the Physiology Node as a function of
the sampling period, assuming a battery capacity of 2.3 Ah.
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FIGURE 4.27: Operational Duration of a 2.3 Ah Battery.
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FIGURE 4.28: Operational Duration of a 2.3 Ah Battery.

In this case, the increase in battery life as a function of the sampling period is
significantly more evident. Specifically, with a sampling period of 300 seconds, the
estimated operational duration is approximately 19 hours, whereas for a sampling period
of one hour, it extends to nearly 38 hours. This behavior is primarily attributed to the
higher power consumption and prolonged duration of the MEASUREMENT state. The
most influential factor in this increased consumption is the SAP-Flow sensor.

The graph (Fig. 4.28) illustrates the operational lifespan of the node as a function of
both battery capacity (Ah) and the sampling period.

4.3.3 Environmental Node Analysis

To evaluate the most complex part of the system, the environmental monitoring node is
characterized by the following signals:

e Input: 12V A.D. power supply.

e Output - Weather Station: Measurement of temperature, atmospheric pres-
sure, relative humidity, wind speed, wind direction, corrected wind direction, and
dew point.

e Output - Electrochemical Sensors: Measurement of gas concentrations, in-
cluding CO, CO2, NO3, VOCs, NO», and OX.
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FIGURE 4.29: Test weather station, temperature-pressure.

The Figs. 4.29a-4.29b above present the graphs corresponding to temperature and
pressure measurements acquired by the MaxiMet GMX 600 weather station. Six values
were sampled over a 30-minute interval, during which an attempt was made to induce
variations in the recorded outputs. Regarding temperature, a heat source was applied
to provoke an increase in its value. However, for pressure, it was not possible to in-
duce a significant variation. Consequently, the recorded pressure values remain close to
the atmospheric pressure of the indoor environment where the experimental test was

conducted.
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FIGURE 4.30: Test weather station, Rh % - dew point.
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An attempt was also made to induce variations in relative humidity and dew point
temperature. Specifically, it can be observed that the dew point increases as relative hu-
midity and temperature rise, as it is directly proportional to these two physical quantities
(Fig. 4.30a—4.30b).
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FIGURE 4.31: Test weather station forecast (speed wind).

Wind was simulated using a breath. As shown in the 10— 20 minute interval, a
noticeable increase in wind speed is observed compared to the resting conditions in the
preceding moments (Fig. 4.31).

The weather station also allows for the measurement of wind direction, providing
two values: the wind direction and the corrected wind direction. The difference between
these values lies in the reference points used for measurement. In the first case, the
reference is the north of the weather station, while in the case of the corrected direction,
the reference is the true cardinal point of north (Figs. 4.32a-4.32b).
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FIGURE 4.32: Test weather station, direction wind.

As shown in Figs 4.33-4.38, the simulated trend of the concentrations is consistent
across all gases. Specifically, the simulation of their presence in the air occurs simultane-
ously, with the gases being introduced by blowing on the sensitive parts of the sensors.
Except for carbon dioxide, which exhibits an offset due to its normal concentration in
the air, all other gases show zero concentration in the absence of blowing.
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Additionally, an analysis of the power consumption and battery life was conducted
for the Environment Node (Table 4.9).

TABLE 4.9: Current Consumption Measurements for the Environment Node

MEASURE REST

MIN [mA] 130.591,7  130.299,1
MAX [mA] 220.025,1  219.611,1
TIME [s] 12 288
AVERAGE [mA] 175.308 174.955
AVERAGE WEIGHTED [mA] 174.969 £ 0.07

By examining the table and comparing it with the data from the Stability and Phys-
iology nodes, it is evident that this node exhibits the highest average current consump-
tion. Furthermore, there is almost no difference in consumption between the REST and
MEASUREMENT states. The logical conclusion is that the Environment Node is the
one most affected in terms of battery life.

The graph (Fig. 4.40) illustrates the operational lifetime of the Environment Node
as a function of the sampling period, assuming a 2.3 Ah battery.
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FIGURE 4.40: Duration of operation for a 2.3 Ah battery.
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FIGURE 4.41: Duration of operation as a function of battery capacity (Ah) and sampling
period.

A noticeable trend in the battery duration is observed: it does not increase with an
increase in the sampling period. This result is expected, as the consumption in both
states is essentially identical. Therefore, altering the sampling frequency does not have
a significantly beneficial effect on power consumption. On the other hand, increasing
the battery capacity successfully leads to an increase in operational duration, reaching
just over 120 hours with a relatively large 22 Ah battery (Fig. 4.41). In conclusion, we
can confirm the initial hypothesis that this node is the most power-intensive in terms of
consumption.

4.4 Conclusions and Future Work

Based on the successful implementation and testing of the proposed multi-node archi-
tecture, this research introduced an innovative IoT-based architecture for the automated
monitoring of tree health, integrating various sensors and electronic devices to enable
real-time data collection and analysis. The experimental validation demonstrated the
feasibility of a distributed measurement system, confirming its potential for environ-
mental monitoring and tree health supervision. However, some challenges remain, par-
ticularly in terms of power consumption and the long-term operational sustainability
of sensor nodes, which could limit large-scale deployment in extensive forests or urban
green spaces.

», UNIVERSITA DEGLI STUDI
DEL SANNIO ecocveno




Chapter 4. Use of IoT for PA: Monitoring the Health State of Trees 183

Future work will focus on optimizing the system for real-world implementation by
improving energy efficiency through smart power management strategies, such as adap-
tive node activation and the integration of renewable energy sources like photovoltaic
panels. Additionally, incorporating drones and high-resolution satellite imagery can
enhance large-scale tree health mapping, while ML algorithms can enable predictive
analysis, identifying early signs of stress or disease. These advancements will help refine
the system, making it a more effective tool for long-term environmental monitoring and
conservation efforts.
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Chapter 5

Conclusions and Future Work

PA has shown significant potential to improve both productivity and sustainability in
farming by utilizing remote sensing technologies, and data analytics. The success of PA
largely depends on the accuracy and reliability of these measurement systems, as they
form the foundation for informed, data-driven decisions. However, challenges such as
sensor inaccuracies, environmental variability, and limitations in calibration processes
can affect data quality, ultimately reducing the effectiveness and value of the insights
generated.

This study specifically addresses the challenges related to the reliability of measure-
ments in remote sensing applications, with a focus on the NDVI, one of the most widely
used Vs for crop health assessment. A comprehensive workflow was developed and val-
idated to quantify the uncertainty associated with NDVI measurements derived from
multispectral imagery. Initial investigations identified the nominal wavelength of the
multispectral camera sensor as a significant source of uncertainty. To more accurately
reflect real-world conditions, the model was subsequently refined by incorporating the
sensor’s OD. The model was applied to multispectral datasets collected from both dry
and fresh Douglas fir leaves. Results demonstrated that uncertainty-induced deviations
in NDVI values ranged approximately from 0.03 to 0.1, potentially limiting the ability
to reliably distinguish between different vegetation states, fresh and dry leaves.

Subsequently, the workflow was extended to incorporate additional sources of uncer-
tainty by integrating parameters such as the sensor’s SNR and the variability of solar
irradiance under diverse atmospheric conditions. Utilizing MCS techniques, the model
quantitatively evaluated both the individual and combined impacts of these uncertainty
sources on NDVI values derived from multispectral imagery of Douglas fir leaves. The
results revealed that variability in the sensor’s nominal wavelength and atmospheric
conditions exerted the most significant influence on NDVI measurements, whereas other
factors, such as the standard deviation of solar irradiance and the camera’s SNR, ex-
hibited comparatively minimal effects. Notably, IQR analysis of NDVI values indicated
that despite the presence of uncertainty, NDVI values remained relatively stable. To
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statistically assess the separability of vegetation states, the Wilcoxon Rank Sum Test
was employed to examine the degree of overlap in NDVI distributions between fresh and
dry leaves following the application of uncertainty sources. The findings demonstrated
a clear separation between the NDVI distributions of fresh and dry leaves, suggesting
that a classification threshold can be established. However, this threshold is sensitive
to environmental fluctuations and must be dynamically adjusted to maintain accuracy
under varying atmospheric conditions.

To address inconsistencies in NDVI measurements caused by atmospheric variabil-
ity, a radiometric compensation model was developed and implemented. This model
integrates emulated Permaflect reference panels with reflectance values ranging from 5%
to 94%, representing diverse lighting and surface conditions, and applied a MCS to ac-
count for uncertainty sources during evaluation. The model was then validated using a
physical reference panel. Then the model was applied to multispectral images captured
by a UAV over pistachio orchards under dry atmospheric conditions. The method’s
performance was assessed by comparing the resulting NDVI values with both ground
truth data and those derived from the conventional radiometric correction in Agisoft
Metashape. Results showed that the proposed model significantly improves NDVI accu-
racy by effectively correcting atmospheric-induced deviations, enhancing the reliability
of vegetation monitoring.

In addition to radiometric analysis, the study explored complementary techniques
to support PA applications through the use of ML. A methodology for detecting yellow
rust disease in winter wheat was proposed using RGB imagery captured by UAVs. The
approach involved feature extraction, statistical analysis using one-way ANOVA, and
classification through ML algorithms—most notably, LDA—which enabled accurate dis-
ease identification. Although the LDA accuracy achieved using RGB imagery was lower
than that of the model used hyperspectral images, the significantly reduced cost and
operational simplicity make RGB-based approaches appealing for practical implemen-
tation. To assess the robustness of the model, a sensitivity analysis was conducted to
evaluate its performance under various uncertainty sources, including blurring, lighting
variability, and noise affecting the images. The results indicated that while the model
was resilient to speckle noise, it showed vulnerability to contrast variations, highlighting
the necessity for radiometric normalization of the RGB channels.

Furthermore, another part of the study focused on designing an IoT-based system to
enable real-time monitoring of environmental conditions and tree health through the de-
ployment of distributed sensor nodes. The proposed system incorporates LoRa, to facili-
tate reliable and energy-efficient data transmission between sensor-integrated nodes and
a central gateway. A detailed analysis of the selected sensors is presented, encompass-
ing their measurement principles, functional specifications, and integration within the
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IoT framework. Additionally, the system’s performance was evaluated through experi-
mental testing conducted under controlled conditions in the LESIM laboratory, focusing
on both sensor accuracy and energy consumption to assess the feasibility of long-term
deployment.

In summary, a critical gap in the field of PA lies at the intersection of measurement
science (metrology) and the challenges posed by real-world, uncontrolled environmen-
tal conditions. In PA, quantification relies on data captured under natural, dynamic
settings—conditions that inherently involve sources of uncertainty beyond human con-
trol. Therefore, a key role of metrology in PA is to understand, quantify, and, where
possible, compensate for these uncertainty sources to enhance the reliability of mea-
surements. This study focuses on one widely used VI, the NDVI, as a representative
metric to investigate how both systematic and environmental uncertainties affect mea-
surement accuracy. A comprehensive methodology was developed to assess and model
the impact of these uncertainty sources—such as sensor characteristics and atmospheric
variability—on NDVI values. A compensation model was proposed to correct for atmo-
spheric effects, demonstrating improved measurement reliability. However, further work
is needed to generalize this approach for broader application across different crops, sen-
sors, and conditions. Additionally, the study examined how uncertainties influence ML
applications in PA, particularly those based on image data. By analyzing the sensitivity
of ML models to various sources of noise and variability, the research identified which
factors most significantly degrade model performance, informing future efforts to build
more robust systems.

Future Work

Building upon the current findings, several directions for future research are recom-
mended:

e Extended Uncertainty Modeling: Incorporate additional sources of uncer-
tainty such as UAV flight parameters (e.g., altitude, image overlap), environmen-
tal variables (e.g., temperature, humidity), and sensor orientation to improve the
robustness of the uncertainty quantification framework.

e Generalization of Radiometric Compensation: Evaluate the performance of
the proposed radiometric compensation model across a variety of vegetation types
and states, including stressed or diseased plants, and expand the methodology
to other VIs beyond NDVI to increase its general applicability. Furthermore, it
is crucial to continue testing and refining the method, assessing its performance
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under a broader range of atmospheric conditions to improve its robustness and
adaptability.

e Benchmarking Against State-of-the-Art: Conduct a comprehensive compari-
son of the proposed compensation method with existing state-of-the-art techniques
using publicly available and standardized datasets. This benchmarking will enable
thorough performance evaluation and enhance the generalizability of the findings.

e Enhanced Monitoring through Integration of Diverse Data Sources:
Combining high-resolution satellite imagery with UAV data allows for more de-
tailed and frequent monitoring of agricultural fields. This integration improves
spatial, spectral resolution (seeing finer details on the ground) and temporal reso-
lution (capturing data more often), which helps in detecting changes in crop health,
soil conditions, and environmental stress more accurately and in a timely manner.

e Automation of Segmentation and Classification Tasks: By applying ML
and DL techniques, tasks such as identifying crop types, mapping field boundaries,
and detecting anomalies can be automated with high accuracy. This reduces the
need for manual analysis, saves time, and ensures consistent results, making it
easier for farmers and agronomists to make informed decisions based on reliable,
real-time data.

e Performance Evaluation of ML Algorithms with Feature Reduction and
Compensation Method Integration: Evaluate the effectiveness of ML algo-
rithms under feature and dimensionality reduction strategies to enhance computa-
tional efficiency and model generalization. Furthermore, incorporate radiometric
and other compensation techniques into RGB image processing workflows to im-
prove robustness against noise, illumination variability, and environmental incon-
sistencies.

e Scalability and Cross-Domain Application: Test the developed methodolo-
gies across different crop types, climatic zones, and agricultural systems to evaluate
scalability and operational viability in diverse agroecological contexts.

e Energy Optimization in IoT Systems: Investigate energy-efficient designs for
TIoT-based monitoring systems through adaptive power management, low-power
communication protocols, and the integration of renewable energy sources such as
photovoltaic panels to facilitate long-term field deployment.
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Appendix A

Teamwork Image and MATLAB
Code for Raw Data Conversion

A.1 Teamwork Image

The Fig. A.1 serves as a reminder of working with the kind and friendly team members
of the project in Spain.

FIGURE A.1: A memorable moment of collaboration with the kind and welcoming project
team in Spain, captured during our work together in September 2024.
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A.2 MATLAB code for converting raw DN values to re-
flected ones based on the Mavic 3M white paper [1].

LisTING A.1: MATLAB Code for Raw Data Conversion

% This is a comment in gray
bit_depth = 15; 7 Bit depth
black_level_offset = 3200; 7 Black level offset

% Sensor gain coefficients for R and NIR bands
sensor_gain_R = [1.016, 1.017, 1.006, 1.012];
sensor_gain_NIR = [1.013, 1.006, 1.010, 1.015];

% Estimated sensor calibration factor and exponential term
sensor_calibration_factor = 0.182000;
exp_factor = exp(6);

% Sensor gain adjustment factors for radiometric correction
gain_adjustment_R = 0.558774;
gain_adjustment _NIR = 0.969294;

% Normalize image data by bit depth
normalization_factor = 27"bit_depth;
I_black_level = black_level_offset / normalization_factor;

%%% Converting raw DN values to reflected values for Red Band
I_R = RawData.RED ./ normalization_factor;
camera_R = (I_R - I_black_level) ./ (sensor_gain_R(j)
* (sensor_calibration_factor / exp_factor));
E_camera_R = camera_R .* gain_adjustment_R;

%%h% Converting raw DN values to reflected values for NIR Band
I_NIR = RawData.NIR_T ./ normalization_factor;
camera_NIR = (I_NIR - I_black_level) ./ (sensor_gain_NIR(j)
* (sensor_calibration_factor / exp_factor));
E_camera_NIR = camera_NIR .* gain_adjustment_NIR;
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Achievements and Certifications
During My PhD

1 Awards

I'm honored to share that my paper [8], titled "IoT-based System for Monitoring Health
State of Trees”, received the Best Paper Award at ”the 7th International Conference on
Internet of Things and Its Applications (2023)”, as shown in Fig. 2.
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FIGURE 2: Best paper award (IoT 2023).

2 Participation in Conferences

Over the past few years, I’ve had the opportunity to actively participate in several inter-
national conferences, where I shared my research with the broader scientific community:

e MetroAgriFor 2022 — IEEE International Workshop on Metrology for
Agriculture and Forestry: Presented my work [2] titled "UAV in Precision
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Agriculture: a Preliminary Assessment of Uncertainty for Vegetation Health In-

dex”; as shown in Fig. 3.
®IEEE
) g Ty
2022 IEEE INTERNATIONAL WORKSHOP ON

A §T METROLOGY FOR AGRICULTURE
“Ase¥ " ANDFORESTRY
»

PERUGIA, ITALY / NOVEMBER 3-5, 2022

CERTIFICATE OF ATTENDANCE
THIS IS TO CERTIFY THAT

FATEMEH KHALESI

ATTENDED THE 2022 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR
AGRICULTURE AND FORESTRY - IEEE METROAGRIFOR 2022

PERUGIA, ITALY, NOVEMBER 3-5, 2022

FIGURE 3: Presentation at IEEE MetroAgriFor 2022.

e MetroAgriFor 2023 — IEEE International Workshop on Metrology for
Agriculture and Forestry: Presented the paper [3], ”Uncertainty Model for
NDVI Estimation from Multispectral Camera Measurements”, Fig. 4.

ey, QIEEE ¢

. UNIVERSITA DI PISA
D g 7

S ¥~ 2023 IEEE INTERNATIONAL WORKSHOP ON
g_,o '} METROLOGY FOR AGRICULTURE AND FORESTRY
CERTIFICATE
OF ATTENDANCE

THIS IS TO CERTIFY THAT

FATEMEH KHALESI

ATTENDED THE 2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY
FOR AGRICULTURE AND FORESTRY

IEEE METROAGRIFOR 2023

PISA, ITALY, NOVEMBER 6-8, 2023

FIGURE 4: Presentation at IEEE MetroAgriFor 2023.
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e IoT 2023 — The 7th IEEE International Conference on Internet of Things
and Its Applications: Presented the award-winning paper [8], "IoT-based System
for Monitoring Health State of Trees”, as illustrated in Fig. 5.

Date: :25 October 2023
by Certificate of Presentation @
P A e

This certificate is awarded to:
Fatemeh Khalesi, Pasquale Daponte, Luca De Vito, Francesco Picariello, Ioan Tudosa
for oral presentation of the paper entitled.
“IoT-based System for Monitoring Health State of Trees’
in the The 7th International Conference on Internet of Things and Its Application (10T 2023) held
at University of Isfahan from 25th to 26th October 2023.

@ Dt colghaem_Dr. Fakhiod hani Dr. Mohammad AWKematbakhsh
= g 7 Congefence Chair

B9 . o O 72 @ © zooP

FIGURE 5: Presentation at International Conference on Internet of Things and Its Application
(IoT 2023).

e MetroAgriFor 2024 — IEEE International Workshop on Metrology for
Agriculture and Forestry: Presented my most recent work [143] titled ”Perfor-
mance Assessment of Machine Learning Algorithms for Yellow Rust Wheat Disease

Classification with UAV RGB Images”, Fig. 6.

4 E
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VRN E N DA

THIS IS TO CERTIFY THAT

FATEMEH KHALESI
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NDED THE 2024 IEEE INTERNATION,
Gty METROLOGY FOR AGRICULTURE AND FORESTRY
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PADOVA, ITALY - OCTOBER 29-31, 2024

MARINFLLO R 'DIMITRIOS PARAFOROS
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FIGURE 6: Presentation at IEEE MetroAgriFor 2024.
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3 Summar Schools

I actively participated in International PH.D. School “ITALO GORINI” in the
years of 2022 (Fig. 7), 2023 (Fig. 8), 2024 (Fig. 9)

oo mina
e o e

iz i/////w 7 ///- Ve grcibe vece
THIS IS TO CERTIFY THAT

FATEMEH KHALESI

HAS ATTENDED THE 2022 INTERNATIONAL PH.D. SCHOOL «ITALO GORINI» AT THE UNIVERSITY OF
SALERNO - FISCIANO CAMPUS - SEPTEMBER 5-9, 2022 FOR A TOTAL OF XX HOURS OF LECTURES AND
HAS PASSED THE FINAL EXAMINATION

Izeends

Prof. Antonio Pietrosanto

The School Directors

FIGURE 7: International PH.D. School “ITALO GORINI” 2022.

l

CERTIFICATE
OF ATTENDANCI

THIS IS TO CERTIFY THAT

FATEMEH KHALESI

HAS ATTENDED THE 2023 INTERNATIONAL PH.D. SCHOOL "ITALO GORINI" AT THE
UNIVERSITY OF FLORENCE - SEPTEMBER 4-8, 2023 FOR A TOTAL OF 20 HOURS OF
LECTURES AND HAS PASSED THE FINAL EXAMINATION.

FLORENCE, SEPTEMBER 8, 2023
The School Directors
| 2,0 I
Wlelews

PROF. MARCANTONIO CATELANI

FIGURE 8: International PH.D. School “ITALO GORINI” 2023.
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FIGURE 9: International PH.D. School “ITALO GORINI" 2024.

4 Others

e In 2023, I actively contributed to the establishment of a collaborative agree-
ment between Sharif University of Technology (Iran) and the University
of Sannio (Italy), as illustrated in Fig. 10.
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ACCORDO PER LA COOPERAZIONE
CULTURALE E SCIENTIFICA TRA
L'UNIVERSITA' DEGLI STUDI DEL
SANNIO E SHARIF UNIVERSITY OF
TECHNOLOGY

Disposizioni generali

Consid do che 1'inters bio culturale
e scientifico & imprescindibile affinché le
istituzioni  accademiche sviluppino e
proprie attivith formative e di ricerca;

Considerando  che  per  raggiungere
I'obiettivo sopra menzionato & necessario
promuovere accordi culturali e scientifici
tra istituzioni di alta formazione in Paesi
diversi;

Dopo aver werificato I'interesse reciproco

AGREEMENT OF CULTURAL AND
SCIENTIFIC COOPERATION
BETWEEN UNIVERSITA® DEGLI
STUDI DEL SANNIO AND SHARIF
UNIVERSITY OF TECHNOLOGY

General Provisions

Given  that cultural and  scientific
exchange is indispensable w academic
institutions to develop their educational
and research activities;

Given that, for the above-stated purpose,
it is necessary to promote and encourage
direct cultural agreements  between
institutions of higher leaming in
different countries;

Having verified the mutual interest that

Universith degli Studi del Sannio Shanif University of Technobogy
1l Rettore Prof. Gerardo Canfora The Rector Prof. Rasool Jalili

Data

Tiembro il : _ Scal {

F1GUrE 10: Contributing to the establishment of a collaborative agreement between Sharif
University of Technology (Iran) and the University of Sannio (Italy) — 2023.

e In September 2024, I participated in a research activity at the Agro-
Environmental Research Centre ‘El Chaparrillo’ (IRTAF-CIAG, Ciudad
Real, Spain), as shown in Fig. 11. This collaborative effort focused on conducting
an advanced field study employing state-of-the-art technologies—including a UAV
equipped with a multispectral camera and a handheld NDVI sensor—to collect
precise ground truth data from a pistachio orchard.
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o IRIAF

sttt Regicnsl de investgacde y Desarct
Agroasmentars y Foresta

Cantifa-La Mancha  Comeieria de Agriuitura, Gasadirds 1 Desarrudla Bura

CERTIFICATE OF ATTENDANCE

26™ of September 2024

To whom it may concern,

This is to centify that the PhD student Fatemeah Khalesi from the Universita degli Studi
del Sannio has actively participated in a research stay in our department at Agro-
Environmental Research Centre ‘El Chaparrillo’ (IRIAF-CIAG, Ciudad Real, Spain), from 9" to
12" of September 2024, with the goal of doing a collaborative study involving advanced
technologies, including a drone equipped with a multispectral camera, an NDVI handheld

sensor combined with fieldwork, to understand the maturity of pistachio nuts.

Yours sincerely,

Dr. Raguel Martinez Pafa

Principal Investigator of Woody Crops Department

F1GURE 11: Collaborative study and fieldwork on pistachio orchards at IRTAF-CIAG, Ciudad
Real, Spain — 2024.

e In 2024, I completed an online course titled ”Neural Networks and Deep
Learning” offered by Coursera. [ successfully passed the course with the
highest grade, as shown in Fig. 12.
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COURSE

@DeepLearning.Al CERTIFICATE

May 3. 2024

Fatemeh Khalesi
has successflly completed

Neural Networks and Deep Learning

el fx(ﬁ

odise N, Foundes.Deeplearing A6, Co funder e

F1GURE 12: Certificate of successful completion of the online course ”"Neural Networks and
Deep Learning” on the Coursera platform — 2024.
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