eDrone *

» * eDrone
* * .
=A% Educational for Drone (eDrone)

574090-EPP-1-2016-1-IT-EPPKA2-CBHE-JP

EDUCATIDNAL*
FOR DRONE

* 4 *

Educational for Drone
(eDrone)
Acquisition and processing of flight data

Prof. Francesco Picariello, Ph.D.

o, Co-funded by the
e Erasmus+ Programme
b of the European Union Universita
degli Studi
del Sannio

This project has been funded with support from the European Commission. This publication (communication) reflects the views only
of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

eDrone *

**ﬁ
x [*

Drone electronics

Erasmus+

Drone electronics must handle two types of tasks:

« 1 - To balance the motor in order to obtain the proper orientation
and trajectory

* 2 -To handle complex tasks such as autonomy, collision
avoidance, computer vision, IP communication

The first type should be accomplished quickly, constantly and without
Interruption.

That's why this task is managed by a simple microcontroller. Ex:
STM32

The microcontroller has limited processing power,
but it is a deterministic behavior. You can be sure it will run your
software in real-time.

For the second type, a computer board is used, typically running Linux.

Prof. Francesco Picariello, Ph.D. Didactic Module
2-8 July 2018

eDrone #
L

* X/

* *

Drone electronics S

Erasmus+

LEGEND

Intel® Aero E
Compute Board 1
Intel‘ Atom™ [partlal] :
x7-28750]
I c FPGA Connection
2
Analog[5], GPIO[24] % Flight Controller Connection
Altera® MAX®10 Ig‘ Micro-controller Connection
FPGA GPIO[4] = Y
! ° Compute board
1 .
l__:,—l— J-|.___ - (Single board
Connector
‘ computer)
- g
o :
égg g s Connection
i (UART)
Flght controller
«t .
(Microcontroller)
Intel® Aero Flight Controller
Prof. Francesco Picariello, Ph.D. Didactic Module

2-8 July 2018

eDrone #

**ﬁ
*x [x

Software architecture

Erasmus+

YMAVLINK

MICRO AIR VEHICLE COMMUNICATION PROTOCOL

MAVLINK

(Micro Air Vehicle Link)
Is an industry-standard
protocol for
communicating with
flight controllers

Prof. Francesco Picariello, Ph.D. Didactic Module
2-8 July 2018

eDrone *
7

**/*

*

Ground control station

Erasmus+

r
Flight controller

Prof. Francesco Picariello, Ph.D. Didactic Module
2-8 July 2018

Erasmus+

[} * -
I n K “For orane K

MAVLIink message structure

Byte
Index
0
1
2
3
4
5
>6 to

| (n+6)

(n+7)
to (n
+8)

Content ‘ Value

Packet
startsign

Payload | 0-255
length

Packet‘0—255
sequence

SystemID | 1-255

Component | 0 - 255
ID

Message | 0-255
ID

Data [-
bytes

Checksum | ITU X.25/SAE AS-4 hash, excluding packet start sign, so bytes 1..(n+6)‘

‘ Explanation

v1.0: OxFE | Indicates the start of a new packet.
(v0.9

Indicates length of the following payload.

Each component counts up his send sequence. Allows to detect
packet loss

ID of the SENDING system. Allows to differentiate different MAVs

on the same network.

ID of the SENDING component. Allows to differentiate different

| components of the same system, e.g. the IMU and the autopilot. |
ID of the message - the id defines what the payload “means” and

how it should be correctly decoded.

255) | Data of the message, depends on the message id.

(low byte, | Note: The checksum also includes MAVLINK_CRC_EXTRA (Number computed

high byte)

from message fields. Protects the packet from decoding a different version of

the same packet but with different variables).

Prof. Francesco Picariello, Ph.D.

eDrone *

**ﬁ
*x [x

‘/-*

* 4 Kk

QGroundControl MAV Component

WAYPOINT_CLEAR_ALL |

|
| Start timeout |
| WAYPOINT_ACK

Example of a message
(WAYPOINT_CLEAR_ALL) sent by the GCS
to a UAV. The UAV receives and executes,
and responds with another message
(WAYPOINT_ACK).

After sending the initial message, the GCS
starts a timer to decide for a timeout state if
no ACK messages is received .

Didactic Module
2-8 July 2018

Erasmus+ M ess ag e

eDrone *

Example of an XML Heartbeat [

EDLII:ATIDNAL
FOR DRONE

* 5 *

<message id="0" name="HEARTBEAT">

<description>The heartbeat message shows that a W

type of the MAV and Autopilot hardware allow the receiving system to treat further
messages from this system appropriate (e.g. by laying out the user interface based on the

Message ID:
O=Heartbeat

autopilot).</description>

<field type="uint8_t" name="type">Type of the MAV (quadrotor, helicopter, etc., up to 15 types,
defined in MAV_TYPE ENUM)</field>

<field type="uint8_t" name="autopilot">Autopilot type / class. defined in MAV_CLASS
ENUM</field>

Field 1

. - " _n " . \I
<field type="uint8_t" name="base_mode">System mode bitfield, see MAV_MODE_FLAGS

ENUM in mavlink/include/mavlink_types.h</field>
<field type="uint32_t" name="custom_mode">Navigation mode bitfield, see S

Field 2

MAV_AUTOPILOT_CUSTOM_MODE ENUM for some examples. This field is autopilot-
specific.</field>

<field type="uint8_t" name="system_status">System status flag, see MAV_STATUS
ENUM</field>

<field type="uint8_t_mavlink_version" name="mavlink_version">MAVLink version</field>
</message>

Field n

Prof. Francesco Picariello, Ph.D.

Didactic Module
2-8 July 2018

MAVLInk Message Types
Erasmus+ EX am p I es

All MAVLink message types 0-150 already defined
Message ids 0 — 149 are common for all autopilots

— <message id="0" name="HEARTBEAT">
— <message id="11" name="SET_MODE">
— <message i1d="24" name="GPS_RAW_INT">

— <message id="41"
name="MISSION_SET_CURRENT">

— <message id="42" name="MISSION_CURRENT">

— <message id="46"
name="MISSION_ITEM_REACHED">

— <message i1d="47" name="MISSION_ACK">

— <message id="76" name="COMMAND_ LONG">

— <message id="77" name="COMMAND _ACK">

— <message 1d="147" name="BATTERY_STATUS">

Message ids 150-250 are autopilot specific, or custom

Prof. Francesco Picariello, Ph.D. Didactic Module
2-8 July 2018

Erasmus+

Compute board

eDrone *
s
e

MAVLInk Proxy

High level
(WebSocket, REST)
socket

Ground Control Software running on

<:> ground computer

Local port

5760
Ground Control Software running on

ground computer

<

<

@ UART

Low level (MAVLInK)
socket port 5760 !
'y Remote control Software running on
4 ground computer

Prof. Francesco Picariello, Ph.D. Didactic Module
2-8 July 2018

Writing your own program

Erasmus+

 There are several ways to write a program
interfacing with the flight controller:

— Write on the top of MAVLInk using one of the
MAVLInk implementations in C/C++, Java or
Python (Es. pymavlink)

— Use one of the framework for MAVLInk
abstraction and interface:
 DroneCore, http://dronecore.io

« Module for ROS, the Robotic Operating System,
http://wiki.ros.org/mavlink

 Dronekit, http://dronekit.io

Prof. Francesco Picariello, Ph.D. Didactic Module
2-8 July 2018

http://dronecore.io/
http://wiki.ros.org/mavlink
http://dronekit.io/

eDrone #

**ﬁ
* *

Pymavlink example program ==

* 4 Kk

Erasmus+

. #!/usr/bin/python

. from future import print function
. import pymavlink.mavutil as mavutil

. import sys

. import time

. mav = mavutil.mavlink connection('tcp:127.0.0.1:5760")
. mav.walit heartbeat ()
i mav.mav.command long send (mav.target system, mav.target component,

mavutil.mavlink.MAV _CMD COMPONENT ARM DISARM, 0, 1,
. o, 0, 0, 0, 0, 0)
. time.sleep (3)
. mav.mav.command long send(mav.target system, mav.target component,

o mavutil.mavlink.MAV_CMD_COMPONENT_ARM_DISARM, v, 0,
. 0, 0, 0, 0, 0, 0)
Prof. Francesco Picariello, Ph.D. Didactic Module

2-8 July 2018

eDrone*
Acquiring sensor data by [

* =Nk
. K “For orone K
Erasmus-+ pymavlink
. from future import print function
. import pymavlink.mavutil as mavutil

. mav = mavutil.mavlink connection('tcp:192.168.8.1:5760")
. mav.walt heartbeat ()
. mav.mav.request data stream send(mav.target system, mav.target component,

. mavutil.mavlink.MAV DATA STREAM ALL, 4, 1)
. while (True) :
J msg = mav.recv match (blocking=False)

msg_type = msg.get type()

. if msg type == "ATTITUDE:
. print ('$0.2£\t%0.2£\t%0.2f' % msg.roll, msg.pitch, msg.yaw)
Prof. Francesco Picariello, Ph.D. Didactic Module

2-8 July 2018

ROS - Robot Operating
Erasmus+ SyStem

It may be tricky to integrate several libraries like
MAVLINK, VISP, RealSense together. ROS is a way to
unify the interfaces and simplify the integration of
components coming from various sources.

ROS is not an operating system, it's a stack running on
top of the Linux OS (Yocto or Docker-Ubuntu in our
case).

ROS has modules such as:

- MavROS for MAVLINK http://wiki.ros.org/mavros

- VISP http://wiki.ros.org/visp e

- OpenCV http://wiki.ros.org/visions e ROS.O rg
- RealSense http://wiki.ros.org/RealSense

Prof. Francesco Picariello, Ph.D. Didactic Module
2-8 July 2018

http://wiki.ros.org/mavros
http://wiki.ros.org/visp
http://wiki.ros.org/vision_opencv
http://wiki.ros.org/RealSense

Erasmus+

eDrone *

**ﬁ
x [*

ROS Philosophy

Peer to Peer

— ROS systems consist of many small programs (nodes) which
connect to each other and continuously exchange messages

Tools-based

— There are many small, generic programs that perform tasks such
as visualization, logging, plotting data streams, etc.

Multi-Lingual
— ROS software modules can be written in any language for which
a client library has been written. Currently client libraries exist for
C++, Python, LISP, Java, JavaScript, MATLAB, Ruby, and more.
Thin
— The ROS conventions encourage contributors to create stand-

alone libraries/packages and then wrap those libraries so they
send and receive messages to/from other ROS modules.

Free & open source, community-based, repositories

Luca De Vito — Measurement [fjrgf)es cesco Picariello, Ph.D. Didactic Module
2-8 July 2018

eDrone #

**ﬁ
*x [x

ROS BASICS

Erasmus+

« ROS offers a message passing interface that provides inter-process
communication.
« A ROS system is composed of nodes, which pass messages, usually in

two forms:
— ROS messages are published on topics and are may-to-many

— ROS services are used for synchronous request/response

lopic
fturtlel/command_velocity

frosout

/rosout

/teleop turtle

Didactic Module

Prof. Francesco Picariello, Ph.D.
2-8 July 2018

SERVICES

Erasmus+

 Services allow one node to call a function
that executes in another node

* The server node which provides the service
specifies a callback to deal with the service
request and advertises the service

* The client node which calls the service then
accesses this service through a local proxy

« Similar to Java RMI mechanism

Prof. Francesco Picariello, Ph.D. Didactic Module
2-8 July 2018

eDrone *

* *ﬁ
x [%

ACTIONS

Erasmus+

 Actions are used in case when the time required for a
function to return a value Is undetermined

* Actions are implemented using three different topics namely
goal, result and feedback. So it is essentially a higher level
protocol that determines how these topics should interact

Action Interface

) . o
ROS Topics

goal

cancel -

Action Action

status

Client ST Server

Prof. Francesco Picariello, Ph.D. Didactic Module
2-8 July 2018

eDrone *

* *%
*x [%

MAVROS

Erasmus+

MAVROS is a MAVLIink extendable communication node for
ROS with UDP proxy for Ground Control Station.

#!/usr/bin/env python
import rospy from
sensor msgs.msg import Imu

def callback(data) :
rospy.loginfo (rospy.get caller id() + "\nlinear acceleration:\nx: [{}]\ny: [{}]\nz: [{}]"
.format (data.linear acceleration.x, data.linear acceleration.y, data.linear acceleration.z))

def listener():
rospy.init node('listener', anonymous=True)
rospy.Subscriber ("/mavros/imu/data", Imu, callback)
rospy.spin ()

if name == "' main_ ':
listener ()

Prof. Francesco Picariello, Ph.D. Didactic Module
2-8 July 2018

eDrone #
7

* X/

*

QgroundControl

Erasmus+

QGroundControl provides full flight control and vehicle setup for PX4 or
ArduPilot powered vehicles. It provides easy and straightforward usage
for beginners, while still delivering high end feature support for
experienced users.

(©)

) B0 %9 < B A X &« Bsx Auo ARDUPILOT

o

X

2
’//\ 1 I\\\

/’\ \ N
/S \

-10—-10 \
e

©

Prof. Francesco Picariello, Ph.D. Didactic Module
2-8 July 2018

eDrone*
QGroundControl: Sensor R

* =\

. EDUCATIONAL .
FOR DRONE

Erasmus+ calibration

File Widgets

g"'o’\O%&\A&)mli"} Manual

Vehicle Setup Sensors Setup

Sensors Setup is used to calibrate the sensors within your vehicle.

Summary

Firmware
Hold still in the current orientation

Airframe
Radio

Flight Modes

Power Completed

Safety
Tuning

Camera _ y i :

Parameters
Hold Still Incomplete Incomplete

Prof. Francesco Picariello, Ph.D. Didactic Module
2-8 July 2018

eDrone &

QgroundControl: Mission Plan

Erasmus+

Upload

¢ emz
o #°
©

Waypoint

Positioning

"
{5

Irchelpark

Prof. Francesco Picariello, Ph.D. Didactic Module
2-8 July 2018

avlink inspection

Erasmus+ * ok

MAVLink Inspector

Iz‘ Component

uin
o 0,021 float
pitch -0,01 8 float
float
float

Prof. Francesco Picariello, Ph.D. Didactic Module
2-8 July 2018

eDrone *

. EDUCATIONAL

Sensor data monitoring by
Erasmus+ groundcontrol

Name

M1:ATTITUDE. t

W I MLATTITUDE roll
M1:ATTITUDE. pitch
M1:ATTITUDI
M1:ATTITUDE.r
M1:ATTITUDE. pi
M1:ATTITUDE. yawsp

=]

Recolor 200 Ground Time

Prof. Francesco Picariello, Ph.D. Didactic Module
2-8 July 2018

