
Educational for Drone
(eDrone)

Acquisition and processing of flight data

Prof. Francesco Picariello, Ph.D.

eDrone

………...

This project has been funded with support from the European Commission. This publication (communication) reflects the views only

of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Educational for Drone (eDrone)
574090-EPP-1-2016-1-IT-EPPKA2-CBHE-JP

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

Drone electronics

Drone electronics must handle two types of tasks:

• 1 – To balance the motor in order to obtain the proper orientation
and trajectory

• 2 – To handle complex tasks such as autonomy, collision
avoidance, computer vision, IP communication

The first type should be accomplished quickly, constantly and without
interruption.

That’s why this task is managed by a simple microcontroller. Ex:
STM32

The microcontroller has limited processing power,
but it is a deterministic behavior. You can be sure it will run your
software in real-time.

For the second type, a computer board is used, typically running Linux.

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

Drone electronics

Compute board

(Single board

computer)

Flght controller

(Microcontroller)

Connection

(UART)

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

Software architecture

Serial

Flight controller SW

(PX4, Ardupilot)

MAVLink

Linux

Serial

MAVLink

Network

Drone

application
MAVLink proxyFlight controller

Compute board

MAVLINK

(Micro Air Vehicle Link)

is an industry-standard

protocol for

communicating with

flight controllers

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

Ground control station

Serial

Flight controller SW

(PX4, Ardupilot)

MAVLink

Linux

Serial

MAVLink

Network

Drone

application
MAVLink proxyFlight controller

Compute board

Linux/Windows

Network

MAVLink

Grond control SW

(QGroundControl,

MissionPlanner, APM)

Ground Control Station

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

MAVLink

MAVLink message structure

Example of a message

(WAYPOINT_CLEAR_ALL) sent by the GCS

to a UAV. The UAV receives and executes,

and responds with another message

(WAYPOINT_ACK).

After sending the initial message, the GCS

starts a timer to decide for a timeout state if

no ACK messages is received .

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

Example of an XML Heartbeat

Message

<message id="0" name="HEARTBEAT">

<description>The heartbeat message shows that a system is present and responding. The

type of the MAV and Autopilot hardware allow the receiving system to treat further

messages from this system appropriate (e.g. by laying out the user interface based on the

autopilot).</description>

<field type="uint8_t" name="type">Type of the MAV (quadrotor, helicopter, etc., up to 15 types,

defined in MAV_TYPE ENUM)</field>

<field type="uint8_t" name="autopilot">Autopilot type / class. defined in MAV_CLASS

ENUM</field>

<field type="uint8_t" name="base_mode">System mode bitfield, see MAV_MODE_FLAGS

ENUM in mavlink/include/mavlink_types.h</field>

<field type="uint32_t" name="custom_mode">Navigation mode bitfield, see

MAV_AUTOPILOT_CUSTOM_MODE ENUM for some examples. This field is autopilot-

specific.</field>

<field type="uint8_t" name="system_status">System status flag, see MAV_STATUS

ENUM</field>

<field type="uint8_t_mavlink_version" name="mavlink_version">MAVLink version</field>

</message>

Message ID:

0=Heartbeat

Field 1

Field 2

Field n

.

.

.

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

MAVLink Message Types

Examples
• All MAVLink message types 0-150 already defined

• Message ids 0 – 149 are common for all autopilots

– <message id="0" name="HEARTBEAT">

– <message id="11" name="SET_MODE">

– <message id="24" name="GPS_RAW_INT">

– <message id="41"
name="MISSION_SET_CURRENT">

– <message id="42" name="MISSION_CURRENT">

– <message id="46"
name="MISSION_ITEM_REACHED">

– <message id="47" name="MISSION_ACK">

– <message id="76" name="COMMAND_LONG">

– <message id="77" name="COMMAND_ACK">

– <message id="147" name="BATTERY_STATUS">
• Message ids 150-250 are autopilot specific, or custom

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

MAVLink Proxy

Flight controller

MAVLink

Proxy

UART

Autonomous Drone

SW

Compute board

Local port

5760

Low level (MAVLink)

socket port 5760

Ground Control Software running on

ground computer

Remote control Software running on

ground computer

Ground Control Software running on

ground computer

High level

(WebSocket, REST)

socket

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

Writing your own program

• There are several ways to write a program
interfacing with the flight controller:
– Write on the top of MAVLink using one of the

MAVLink implementations in C/C++, Java or
Python (Es. pymavlink)

– Use one of the framework for MAVLink
abstraction and interface:

• DroneCore, http://dronecore.io

• Module for ROS, the Robotic Operating System,
http://wiki.ros.org/mavlink

• Dronekit, http://dronekit.io

http://dronecore.io/
http://wiki.ros.org/mavlink
http://dronekit.io/

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

Pymavlink example program

• #!/usr/bin/python

• from __future__ import print_function

• import pymavlink.mavutil as mavutil

• import sys

• import time

• mav = mavutil.mavlink_connection('tcp:127.0.0.1:5760')

• mav.wait_heartbeat()

• mav.mav.command_long_send(mav.target_system, mav.target_component,

mavutil.mavlink.MAV_CMD_COMPONENT_ARM_DISARM, 0, 1,

• 0, 0, 0, 0, 0, 0)

• time.sleep(3)

• mav.mav.command_long_send(mav.target_system, mav.target_component,

• mavutil.mavlink.MAV_CMD_COMPONENT_ARM_DISARM, 0, 0,

• 0, 0, 0, 0, 0, 0)

Arms the

motors

Waits 3

seconds

Disarms the

motors

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

Acquiring sensor data by

pymavlink
• from __future__ import print_function

• import pymavlink.mavutil as mavutil

• mav = mavutil.mavlink_connection('tcp:192.168.8.1:5760')

• mav.wait_heartbeat()

• mav.mav.request_data_stream_send(mav.target_system, mav.target_component,

• mavutil.mavlink.MAV_DATA_STREAM_ALL, 4, 1)

• while(True):

• msg = mav.recv_match(blocking=False)

msg_type = msg.get_type()

• if msg_type == "ATTITUDE:

• print('%0.2f\t%0.2f\t%0.2f' % msg.roll, msg.pitch, msg.yaw)

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

ROS - Robot Operating

System

It may be tricky to integrate several libraries like
MAVLINK, VISP, RealSense together. ROS is a way to
unify the interfaces and simplify the integration of
components coming from various sources.

ROS is not an operating system, it’s a stack running on
top of the Linux OS (Yocto or Docker-Ubuntu in our
case).

ROS has modules such as:

- MavROS for MAVLINK http://wiki.ros.org/mavros

- VISP http://wiki.ros.org/visp

- OpenCV http://wiki.ros.org/vision_opencv

- RealSense http://wiki.ros.org/RealSense

http://wiki.ros.org/mavros
http://wiki.ros.org/visp
http://wiki.ros.org/vision_opencv
http://wiki.ros.org/RealSense

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

ROS Philosophy

• Peer to Peer
– ROS systems consist of many small programs (nodes) which

connect to each other and continuously exchange messages

• Tools-based
– There are many small, generic programs that perform tasks such

as visualization, logging, plotting data streams, etc.

• Multi-Lingual
– ROS software modules can be written in any language for which

a client library has been written. Currently client libraries exist for
C++, Python, LISP, Java, JavaScript, MATLAB, Ruby, and more.

• Thin
– The ROS conventions encourage contributors to create stand-

alone libraries/packages and then wrap those libraries so they
send and receive messages to/from other ROS modules.

• Free & open source, community-based, repositories

Luca De Vito – Measurement for drones

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

ROS BASICS

• ROS offers a message passing interface that provides inter-process
communication.

• A ROS system is composed of nodes, which pass messages, usually in
two forms:

– ROS messages are published on topics and are may-to-many

– ROS services are used for synchronous request/response

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

SERVICES

• Services allow one node to call a function

that executes in another node

• The server node which provides the service

specifies a callback to deal with the service

request and advertises the service

• The client node which calls the service then

accesses this service through a local proxy

• Similar to Java RMI mechanism

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

ACTIONS

• Actions are used in case when the time required for a
function to return a value is undetermined

• Actions are implemented using three different topics namely
goal, result and feedback. So it is essentially a higher level
protocol that determines how these topics should interact

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

MAVROS

MAVROS is a MAVLink extendable communication node for
ROS with UDP proxy for Ground Control Station.

#!/usr/bin/env python

import rospy from

sensor_msgs.msg import Imu

def callback(data):

rospy.loginfo(rospy.get_caller_id() + "\nlinear acceleration:\nx: [{}]\ny: [{}]\nz: [{}]"

.format(data.linear_acceleration.x, data.linear_acceleration.y, data.linear_acceleration.z))

def listener():

rospy.init_node('listener', anonymous=True)

rospy.Subscriber("/mavros/imu/data", Imu, callback)

rospy.spin()

if __name__ == '__main__':

listener()

Declares that the node subscribes to the

topic of type sensor_msgs.msgs.Imu

Keeps the node from exiting until it has

been shutdown

Prints linear acceleration values as soon

as they have been received

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

QgroundControl

QGroundControl provides full flight control and vehicle setup for PX4 or

ArduPilot powered vehicles. It provides easy and straightforward usage

for beginners, while still delivering high end feature support for

experienced users.

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

QGroundControl: Sensor

calibration

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

QgroundControl: Mission Plan

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

Mavlink inspection

Didactic Module

2-8 July 2018
Prof. Francesco Picariello, Ph.D.

Sensor data monitoring by

Qgroundcontrol

