
TMS320C6000 DSK
Board Support Library

API User’s Guide

Preliminary

Literature Number: SPRU432
October 2000

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is current and complete. All products are sold subject to the terms and conditions of sale supplied
at the time of order acknowledgment, including those pertaining to warranty, patent infringement,
and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the
time of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such semiconductor products or services might be
or are used. TI’s publication of information regarding any third party’s products or services does
not constitute TI’s approval, warranty or endorsement thereof.

Copyright 2000, Texas Instruments Incorporated

iiiRead This First

Preface

��������
���	
�

About This Manual

The TMS320C6000� DSK Board Support Library (BSL) is a set of application
programming interfaces (APIs) used to configure and control all on-board de-
vices. It is intended to make it easier for developers by eliminating much of the
tedious grunt-work usually needed to get algorithms up and running in a real
system.

Some of the advantages offered by the BSL include: device ease of use, a level
of compatibility between devices, shortened development time, portability,
some standardization, and hardware abstraction. A version of the BSL is avail-
able for the TMS320C6711� Developers Starter Kit (DSK).

This document is organized as follows:

� Introduction – a high level overview of the BSL
� Six BSL API module chapters
� Glossary

How to Use This Manual

The information in this document describes the contents of the
TMS320C6000� board support library (BSL) as follows:

� Chapter 1 provides an overview of the BSL, includes a table showing BSL
API module support for various C6000 devices, and lists the API modules.

� Each additional chapter discusses an individual BSL API module and pro-
vides:

� A description of the API module

� A table showing the APIs within the module and a page reference for
more specific information

� A module API Reference section in alphabetical order listing the BSL
API functions, enumerations, type definitions, structures, constants,
and global variables. Examples are given to show how these elements
are used.

How to Use This Manual

iv

Notational Conventions

This document uses the following conventions:

� Program listings, program examples, and interactive displays are shown
in a special typeface .

� In syntax descriptions, the function or macro appears in a bold typeface
and the parameters appear in plainface within parentheses. Portions of a
syntax that are in bold should be entered as shown; portions of a syntax
that are within parentheses describe the type of information that should be
entered.

� Macro names are written in uppercase text; function names are written in
lowercase.

� TMS320C6000 devices are referred to throughout this reference guide as
C6201, C6202, etc.

Related Documentation From Texas Instruments

The following books describe the TMS320C6x devices and related support
tools. To obtain a copy of any of these TI documents, call the Texas Instru-
ments Literature Response Center at (800) 477–8924. When ordering, please
identify the book by its title and literature number. Many of these documents
can be found on the Internet at http://www.ti.com.

TMS320C62x/C67x Technical Brief (literature number SPRU197) gives an
introduction to the ’C62x/C67x digital signal processors, development
tools, and third-party support.

TMS320C6000 CPU and Instruction Set Reference Guide (literature
number SPRU189) describes the ’C6000 CPU architecture, instruction
set, pipeline, and interrupts for these digital signal processors.

TMS320C6000 Peripherals Reference Guide (literature number SPRU190)
describes common peripherals available on the TMS320C6000 digital
signal processors. This book includes information on the internal data
and program memories, the external memory interface (EMIF), the host
port interface (HPI), multichannel buffered serial ports (McBSPs), direct
memory access (DMA), enhanced DMA (EDMA), expansion bus, clock-
ing and phase-locked loop (PLL), and the power-down modes.

TMS320C6000 Programmer’s Guide (literature number SPRU198)
describes ways to optimize C and assembly code for the TMS320C6000
DSPs and includes application program examples.

Notational Conventions / Related Documentation From Texas Instruments

How to Use This Manual

vRead This First

TMS320C6000 Assembly Language Tools User’s Guide (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the ’C6000 generation of devices.

TMS320C6000 Optimizing C Compiler User’s Guide (literature number
SPRU187) describes the ’C6000 C compiler and the assembly optimizer.
This C compiler accepts ANSI standard C source code and produces as-
sembly language source code for the ’C6000 generation of devices. The
assembly optimizer helps you optimize your assembly code.

TMS320C62x DSP Library (literature number SPRU402) describes the 32
high-level, C-callable, optimized DSP functions for general signal proc-
essing, math, and vector operations.

TMS320C62x Image/Video Processing Library (literature number
SPRU400) describes the optimized image/video processing functions
including many C-callable, assembly-optimized, general-purpose
image/video processing routines.

vi

Contents

vii

��������

1 BSL Overview 1-1.
Provides an overview of the board support library (BSL), describes its beneficial features, and
lists each of its API modules.

1.1 BSL Introduction 1-2.
1.2 BSL API Modules 1-3.

1.2.1 BSL API Module Support 1-3.
1.2.2 Using BSL Handles 1-4.

1.3 BSL Project Setting 1-5.
1.3.1 User’s Program Setting 1-5.
1.3.2 Compiler Options 1-5.
1.3.3 Linker Options 1-5.

2 AD535 API Module 2-1.
Provides a description of the AD535 API module, lists the individual APIs within the module,
and includes a reference section with the API functions, structures, and constants that are ap-
plicable to this module.

2.1 AD535 API Module Description 2-2.
2.2 AD535 API Reference 2-3.

3 BOARD API Module 3-1.
Provides a description of the BOARD API module, lists the individual APIs within the module,
and includes a reference section showing the API functions and constants that are applicable
to this module.

3.1 BOARD API Module Description 3-2.
3.2 BOARD API Reference 3-3.

4 BSL API Module 4-1.
Provides a description of the BSL API module and includes a reference section showing the
single API function within this module.

4.1 BSL API Module Description 4-2.
4.2 BSL API Reference 4-3.

Contents

viii

5 DIP API Module 5-1.
Provides a description of the DIP API module, lists the individual APIs within the module, and
includes a reference section showing the single API function and constant within this module.

5.1 DIP API Module Description 5-2.
5.2 DIP API Reference 5-3.

6 FLASH API Module 6-1.
Provides a description of the FLASH API module, lists the individual APIs within the module,
and includes a reference section showing the API functions and constants that are applicable
to this module.

6.1 FLASH API Module Description 6-2.
6.2 FLASH API Reference 6-3.

7 LED API Module 7-1.
Provides a description of the LED API module, lists the individual APIs within the module, and
includes a reference section showing the API functions and constants that are applicable to this
module.

7.1 LED API Module Description 7-2.
7.2 LED API Reference 7-3.

A Glossary A-1.

B Index Index-1.

Tables

ixContents

������

1–1. BSL Modules and Include Files 1-3.
1–2. BSL Support Library Name and Symbol Conventions 1-4.
1–3. BSL API Module Support for 6711 DSK 1-4.
2–1. AD535 API Summary 2-2.
3–1. BOARD API Summary 3-2.
4–1. BSL API Function 4-2.
5–1. DIP API Summary 5-2.
6–1. FLASH API Summary 6-2.
7–1. LED API Summary 7-2.

x

1-1

�����������	

This chapter provides an overview of the board support library (BSL), de-
scribes its beneficial features, and lists each of its API modules.

Topic Page

1.1 BSL Introduction 1-2.

1.2 BSL API Modules 1-3.

1.3 BSL Project Settings 1-5.

Chapter 1

PRELIMINARY

PRELIMINARY

BSL Introduction PRELIMINARY

 1-2 PRELIMINARY

1.1 BSL Introduction

The BSL provides a C-language interface for configuring and controlling all on-
board devices. The library consists of discrete modules that are built and ar-
chived into a library file. Each module represents an individual API and is re-
ferred to simply as an API module. The module granularity is architected such
that each device is covered by a single API module except the I/O Port Module,
which is divided into two API modules: LED and DIP.

How The BSL Benefits You

The BSL’s beneficial features include device ease of use, shortened develop-
ment time, portability, hardware abstraction, and a level of standardization and
compatibility among devices. In general, the BSL makes it easier for you to get
your algorithms up and running in the shortest length of time.

BSL API ModulesPRELIMINARY

1-3BSL OverviewPRELIMINARY

1.2 BSL API Modules

For each on-board device, one header file and one source file will be gener-
ated with the following names: bsl_device.h and bsl_device.c .

Also, a library will be built for a given board:

 i.e: bsl6711dsk.lib

Note : The soource files.c are archived into a single source file bsl.src.

Table 1–1 provides a current list of BSL API Modules.

Table 1–1. BSL Modules and Include Files

Board
Module Description Include File

Module Support
Symbol

BSL Top-level module: Initialization of the BSL bsl_bsl.h BSL_init

BOARD Board-specific module – can call CSL at run-
time

bsl_board.h BOARD_SUPPORT

AD535 Audio codec module (6711 DSK) bsl_ad535.h AD535_SUPPORT

DIP Dip switches module bsl_dip.h DIP_SUPPORT

FLASH Flash ROM module bsl_flash.h FLASH_SUPPORT

LED LED module bsl_led.h LED_SUPPORT

Interdependencies

Although each API module is unique, there exists some interdependency be-
tween the CSL (Chip Support Library) and BSL modules. For example, the
AD535 module depends on the MCBSP module because MCBSP0 is dedi-
cated to serial communication.

1.2.1 BSL API Module Support

Not all API modules are supported on all boards. For example, the AIC10 mod-
ule is not supported on the 6711 DSK because the board does not have an
AIC10 codec. When an API module is not supported, all of its header file infor-
mation is conditionally compiled out, meaning the declarations will not exist.
Because of this, calling an AIC10 API function on a board that does not support
AIC10 results in a compiler and/or linker error.

Note: AIC10 codec is implemented on 5510evm.

BSL API Modules PRELIMINARY

 1-4 PRELIMINARY

6711 DSK Module Support

Table 1–3 shows which board each API module is supported on. Currently, all
modules described in the following chapters are supported by the 6711 DSK.
In the future, more APIs supported by other platforms will be added to the BSL.

Table 1–2. BSL Support Library Name and Symbol Conventions

Board BSL library BSL Symbol CSL library CSL symbol

6711DSK bsl6711.lib BOARD_6711DSK csl6711.lib CHIP_6711

Table 1–3. BSL API Module Support for 6711 DSK

Module 6711 DSK

AD535 X

BOARD X

DIP X

FLASH X

LED X

1.2.2 Using BSL Handles

Handles are required for devices present more than once. For example, only
one AD535 codec is implemented on-board and associated with mcbsp0;
however, you can use a second AD535 implemented on a daughter board and
make data transfers through mcbsp1.

BSL Project SettingsPRELIMINARY

1-5BSL OverviewPRELIMINARY

1.3 BSL Project Settings

1.3.1 User’s Program Setting

Due to the interdependancies between CSL and BSL, the CSL is initialized by
calling the CSL_init() function followed by the BSL initialization function,
BSL_init() .

Also, the two header files <csl.h> and <bsl.h> have to be included in your pro-
gram in order for you to have access to the BSL APIs.

1.3.2 Compiler Options

In the Compiler Option window, the Chip and Board symbols have to be de-
fined using the –d switch. For example,

–dCHIP_6711 –dBOARD_6711DSK

Also, the paths of the “Include” folder containing the BSL and CSL header files
have to be set with the –i switch.

1.3.3 Linker Options

The paths of the CSL and BSL libraries have to be defined. The two libraries
are named, respectively, csl6711.lib and bsl6711.lib.

Note: Device Identification Symbol

When using the BSL, it is up to the user to define a project-wide symbol from
a predetermined set to identify which device is being used. This board identi-
fication symbol is then used in the BSL header files to conditionally define
the support symbols. (See Section 3.2, API Reference, for more information.

PRELIMINARY

 1-6 PRELIMINARY

2-1

��������������
	

This chapter provides a description of the AD535 API module, lists the indi-
vidual APIs within the module, and includes a reference section showing the
API functions, structures, and constants that are applicable to this module.

Topic Page

2.1 AD535 API Module Description 2-2.

2.2 AD535 API Reference 2-3.

Chapter 2

PRELIMINARY

PRELIMINARY

AD535 API Module Description PRELIMINARY

 2-2 PRELIMINARY

2.1 AD535 API Module Description

The AD535 module (audio codec supported by the 6711 DSK) serves as a lev-
el of abstraction such that it works the same for all AD535s supported on TI
EVM/DSKs.

To use an AD535 device, you must first open it and obtain a device handle us-
ing AD535_open() . Once opened, use the device handle to call the other API
functions. The codec may be configured by passing an AD535_Config struc-
ture to AD535_config() .

Table 2–1. AD535 API Summary

Syntax Type Description Page

AD535_close F Closes the AD535 module 2-3

AD535_Config S The AD535 configuration structure used to set up an
AD535 codec

2-3

AD535_config F Sets up the AD535 codec using the register value
passed in

2-4

AD535_getMcbsphandle F Returns the Handle of the McBSP associated with the
codec previously opened

2-5

AD535_Id S The AD535 Identity Structure used to allocate the
Codec device and the associated McBSP

2-5

AD535_inGain F Sets the AD535’s input gain 2-7

AD535_micGain F Sets the microphone preamplifier gain 2-7

AD535_modifyReg F Modifies the AD535 control registers 2-8

AD535_open F Opens an AD535 codec for use 2-9

AD535_outGain F Sets the AD535’s output gain 2-10

AD535_powerDown F Puts the AD535 in power-down mode 2-10

AD535_read F Reads received data (voice channel) 2-11

AD535_readReg F Reads the contents of AD535 control registers 2-11

AD535_reset F Resets the AD535 2-12

AD535_SUPPORT C A compile time constant whose value is 1 if the board
supports the AD535 module

2-12

AD535_write F Writes data to be sent 2-12

AD535_writeReg F Writes to the AD535 control registers 2-13

Note: F = Function; C = Constant; S = Structure; T = Typedef

AD535 API ReferencePRELIMINARY

2-3AD535 API ModulePRELIMINARY

2.2 AD535 API Reference

Closes codec channelAD535_close

Function Void AD535_close(
 AD535_Handle hAD535
);

Arguments HAD535 Handle to codec channel, see AD535_open()

Return Value none

Description This function closes a codec channel previously opened via
AD535_open(). The registers for the codec are set to their power-on
defaults.

Example AD535_close(hAD535);

Configuration structure used to set up codec channelAD535_Config

Structure AD535_Config

Members AD535_Loopback lb_mode Loopback mode:
� AD535_LOOPBACK_DISABLE
� AD535_LOOPBACK_ANALOG
� AD535_LOOPBACK_DIGITAL

AD535_MicGain mic_gain Microphone preamp gain:
� AD535_MICGAIN_OFF
� AD535_MICGAIN_ON

Float in_gain ADC input gain:
� AD535_GAIN_MUTE
� AD535_GAIN_0DB
� –36 dB <= gain <= 12 dB

(in 1.5 dB steps)

Float out_gain DAC output gain:
� AD535_GAIN_MUTE
� AD535_GAIN_0DB
� –36 dB <= gain <= 12 dB

(in 1.5 dB steps)

AD535 API Reference PRELIMINARY

 2-4 PRELIMINARY

Description This is the AD535 configuration structure used to set up a codec channel.
You create and initialize this structure and then pass its address to the
AD535_config() function.

Example AD535_Config myConfig = {
 AD535_LOOPBACK_DISABLE,
 AD535_MICGAIN_OFF,
 AD535_GAIN_0DB,
 AD535_GAIN_0DB
 };
AD535_config(hAD535,&myConfig);

Sets up AD535 using configuration structureAD535_config

Function Void AD535_config(
 AD535_Handle hAD535,
 AD535_Config *config
);

Arguments HAD535 Handle to codec channel, see AD535_open()

Config Pointer to an initialized configuration structure, see
AD535_Config

Return Value none

Description Sets up the AD535 using the configuration structure. The values of the
structure are written to the AD535 control registers.

Example AD535_Config myConfig = {
 AD535_LOOPBACK_DISABLE,
 AD535_MICGAIN_OFF,
 AD535_GAIN_0DB,
 AD535_GAIN_0DB
 };
AD535_config(hAD535,&myConfig);

AD535 API ReferencePRELIMINARY

2-5AD535 API ModulePRELIMINARY

Returns McBSP Handle
AD535_getMcbsp
Handle

Function Mcbsp_Handle AD535_getMcbspHandle(
 AD535_Handle hAD535,
);

Arguments hAD535 Handle to codec channel, see AD535_open()

Return Value Mcbsp_handle Handle to the opened McBSP associated to the
number of McBSP.

Description Returns the McBSP Handle associated with the McBSP used for AD535
communication.

Note: The Mcbsp_Handle type is defined in the Chip Suppport Library
(CSL) and created by the internal call of the MCBSP_open() function.

Example Mcbsp_Handle hMcbsp;

hMcbsp = AD535_getHandleMcbsp(hAD535);

Allocates codec channelAD535_Id

Structure AD535_Id

Members Typedef Struct {
 Struct {
 int mcbsp_no;

The typedef structure AD535_Id includes 2
substructures such as Id and Obj
structures

 } Id;
 Struct {
 Boolean allocated;
 MCBSP_Handle

The internal structure Id contains the field
mcbsp_no. The member mcbsp_no
contains the number of the serial port you
wish to use.

hMcbsp;
 } Obj;
} AD535_Id

The internal structure Obj contains the
boolean field to allocate the codec and the
McBSP handle associated with the number
of the McBSP which will be open
“mcbsp_no”.

AD535 API Reference PRELIMINARY

 2-6 PRELIMINARY

Description This AD535_Id structure is used to allocate a codec channel. You create
and initialize this structure, then pass its address to the AD535_open()
function. Also, this structure allows you to access to the McBSP handle
through the AD535_getMcbsphandle() function after calling
AD535_open() .

If you wish to use the AD535 codec implemented on 6711DSK you can
pass the predefined pointer AD535_localId .

The predefined pointer AD535_locald associates the codec to the
mcbsp0 directly. It’s not necessary to define AD535_Id ponter.

mcbsp_no variable is set to 0 (mcbsp0)

See source file bsl_ad535.c

Example /* the codec of 6711DSK use the predfined pointer AD535_localId */
AD535_Handle hAD535;
Mcbsp_Handle hMcbsp;

hAD535 = AD535_open(AD535_localId);
hMcbsp = AD535_getHandleMcbsp(hAD535);

To set up your own AD535_Id, for example:
/* set up a codec using McBSP 1 */
AD535_Handle hAD535;
AD535_Id myId;
myId.Id.mcbsp_no = 1;
Mcbsp_Handle hMcbsp1;

hAD535 = AD535_open(*myId);
hMcbsp1 = AD535_getHandleMcbsp(hAD535);

Note: You can also use the Mcbsp1 if you haven;t opened an AD535
handle with the predefined AD535_localID object.

AD535 API ReferencePRELIMINARY

2-7AD535 API ModulePRELIMINARY

Sets AD535’s input gainAD535_inGain

Function void AD535_inGain(
 AD535_Handle hAD535,
 float inGain
);

Arguments hAD535 Handle to codec channel, see AD535_open()

inGain ADC input gain.

Return Value none

Description Sets the AD535’s input gain.

6711 DSK
� AD535_GAIN_MUTE
� AD535_GAIN_0DB
� –36 dB <= inGain <= 12 dB (in 1.5 dB steps)

Example AD535_inGain (hAD535,6.0);

Sets microphone preamplifier gainAD535_micGain

Function void AD535_micGain(
 AD535_Handle hAD535,
 AD535_MicGain micGain
);

Arguments hAD535 Handle to codec channel, see AD535_open()

micGain Microphone preamplifier gain enumeration.

Return Value none

Description Sets the microphone preamplifier gain.

6711 DSK
� AD535_MICGAIN_OFF = off, 0 dB
� AD535_MICGAIN_ON = on, 20 dB

Example AD535_micGain(hAD535,AD535_MICGAIN_OFF);

AD535 API Reference PRELIMINARY

 2-8 PRELIMINARY

Modifies specified control registerAD535_modifyReg

Function void AD535_modifyReg(
 AD535_Handle hAD535,
 AD535_Reg ad535Register,
 Uint32 val,
 Uint32 mask
);

Arguments hAD535 Handle to codec channel, see AD535_open()

ad535Register Control register enumeration:
� AD535_REG_CTRL0
� AD535_REG_CTRL1
� AD535_REG_CTRL2
� AD535_REG_CTRL3
� AD535_REG_CTRL4
� AD535_REG_CTRL5

val Value to be masked into register

mask Bit-value mask. A value of 1 sets the bit to the
corresponding value in Val; a 0 keeps the current
value of the bit.

Return Value none

Description Modifies the specified control register according to the bit mask (Mask)
and value (Val).

6711 DSK

Note: Only the Voice channel is available on this board. This means the
changes to control registers 0, 1, and 2 will have no effect on the
operation of the codec.

Example To modify the ADC voice input gain in control register 4:
AD535_modifyReg(hAD535,AD535_REG_CTRL4,0x001F,0x003F);

AD535 API ReferencePRELIMINARY

2-9AD535 API ModulePRELIMINARY

Opens codec channelAD535_open

Function AD535_Handle AD535_open (
 AD535_Id *myId
);

Arguments myId Pointer to an object of type AD535_Id. This object
contains the McBSP channel number and a McBSP
handle.

6711 DSK
If you want to use the local codec, you may pass
the predefined pointer AD535_localId. If you want
to use another codec you must create your own
AD535_Id.

Return Value AD535_Handle Handle to newly opened codec channel

Note: If the board does not support this function, it will
return the invalid handle INV.

Description Before a codec channel can be used, it must first be opened by this
function. Once opened, it cannot be opened again until closed. See
AD535_close() .

Example To use the local codec:
AD535_Handle hAD535;
hAD535 = AD535_open(AD535_localId);

To set up your own AD535_Id, for example:
/* set up a codec using McBSP 1 */
AD535_Handle hAD535;
AD535_Id myId;
myId.Id.mcbsp_no = 1;
hAD535 = AD535_open(*myId);

AD535 API Reference PRELIMINARY

 2-10 PRELIMINARY

Sets AD535’s output gainAD535_outGain

Function void AD535_outGain(
 AD535_Handle hAD535,
 float outGain
);

Arguments hAD535 Handle to codec channel, see AD535_open()

outGain DAC output gain.

Return Value none

Description Sets the AD535’s output gain.

6711 DSK
� AD535_GAIN_MUTE
� AD535_GAIN_0DB
� –36 dB <= outGain <= 12 dB (in 1.5 dB steps)

Example AD535_outGain(hAD535,AD535_GAIN_0DB);

Enables AD535’s power-down modeAD535_powerDown

Function void AD535_powerDown(
 AD535_Handle hAD535
);

Arguments hAD535 Handle to codec channel, see AD535_open()

Return Value none

Description Enables the AD535’s power down mode. This performs a software power
down, so the control registers retain their previous values.

Example AD535_powerDown(hAD535);

AD535 API ReferencePRELIMINARY

2-11AD535 API ModulePRELIMINARY

Returns value of ouput from ADCAD535_read

Function int AD535_read(
 AD535_Handle hAD535
);

Arguments hAD535 Handle to codec channel, see AD535_open()

Return Value int Value returned from output of ADC.

Description Returns the value of the ouput from the ADC.

Example int val;
val = AD535_read(hAD535);

Returns value of specified control registerAD535_readReg

Function Uint32 AD535_readReg(
 AD535_Handle hAD535,
 AD535_Reg ad535Register
);

Arguments hAD535 Handle to codec channel, see AD535_open()

ad535Register Control register enumeration:
� AD535_REG_CTRL0
� AD535_REG_CTRL1
� AD535_REG_CTRL2
� AD535_REG_CTRL3
� AD535_REG_CTRL4
� AD535_REG_CTRL5

Return Value Uint32 Value of specified control register.

Description Returns the value of the specified control register.

Example Uint32 controlRegVal;
controlRegVal = AD535_readReg(hAD535,
AD535_REG_CTRL3);

AD535 API Reference PRELIMINARY

 2-12 PRELIMINARY

Asserts software resetAD535_reset

Function void AD535_reset(
 AD535_Handle hAD535
);

Arguments hAD535 Handle to codec channel, see AD535_open()

Return Value none

Description Asserts a software reset and sets all the registers to their power-on default
values.

Example AD535_reset(hAD535);

Compile time constantAD535_SUPPORT

Constant AD535_SUPPORT

Description Compile time constant that has a value of 1 if the board supports the
AD535 module and 0 otherwise. You are not required to use this constant.

Currently, all devices support this module.

Example #if (AD535_SUPPORT)
 /* do AD535 operations */
#endif

Writes value to input of DACAD535_write

Function void AD535_write(
 AD535_Handle hAD535,
 int val
);

Arguments hAD535 Handle to codec channel, see AD535_open()

val Value to be written to DAC.

Return Value none

Description Writes value to the input of the DAC.

Example To read from the codec and write back the same value, use:
AD535_write(hAD535,AD535_read(hAD535));

AD535 API ReferencePRELIMINARY

2-13AD535 API ModulePRELIMINARY

Writes value to specified control registerAD535_writeReg

Function void AD535_writeReg(
 AD535_Handle hAD535,
 AD535_Reg ad535Register,
 Uint32 val
);

Arguments hAD535 Handle to codec channel, see AD535_open()

ad535Register Control register enumeration:
� AD535_REG_CTRL0
� AD535_REG_CTRL1
� AD535_REG_CTRL2
� AD535_REG_CTRL3
� AD535_REG_CTRL4
� AD535_REG_CTRL5

val Value to be written to specified register

Return Value none

Description Writes value to the specified control register.

6711 DSK

Note: Only the Voice channel is available on this board. This means the
changes to control registers 0, 1, and 2 will have no effect on the
operation of the codec.

Example /* Set up 10.5db ADC input gain and 0dB microphone
 preamp gain in control register 4 */
AD535_writeReg(hAD535, AD535_REG_CTRL4, 0x0040);

PRELIMINARY

 2-14 PRELIMINARY

3-1

������������	�

This chapter provides a description of the BOARD API module, lists the indi-
vidual APIs within the module, and includes a reference section showing the
API functions and constants that are applicable to this module.

Topic Page

3.1 BOARD API Module Description 3-2.

3.2 BOARD API Reference 3-3.

Chapter 3

PRELIMINARY

PRELIMINARY

BOARD API Module Description PRELIMINARY

 3-2 PRELIMINARY

3.1 BOARD API Module Description

The BOARD module is where we put board-specific content. This module has
the potential to grow in the future as more boards are placed on the market.
Currently, the module has some API functions for register access such as
BOARD_readReg() , and BOARD_writeReg() .

A predefined symbol is associated with each EVM/DSK, for example,

BOARD_6711DSK (–d switch for compiler options setting)

Table 3–1. BOARD API Summary

Syntax Type Description Page

BOARD_readReg F Reads a specified.BOARD memory–mapped register 3-3

BOARD_SUPPORT C A compile time constant whose value is 1 if the board
supports the BOARD module

3-3

BOARD_writeReg F Writes into a specified Board memory–mapped
register

3-4

Note: F = Function; C = Constant; S = Structure; T = Typedef

BOARD API ReferencePRELIMINARY

3-3BOARD API ModulePRELIMINARY

3.2 BOARD API Reference

Returns value of specified memory-mapped registerBOARD_readReg

Function Uint32 BOARD_readReg(
 BOARD_Reg boardRegister
);

Arguments boardRegister Register enumeration

6711 DSK
� BOARD_REG_IOPORT

Return Value Uint32 Returns specified register value

Description Returns the value of the specified memory-mapped register.

Example Uint32 boardRegVal;
boardRegVal = BOARD_readReg(BOARD_REG_IOPORT);

Compile time constantBOARD_SUPPORT

Constant BOARD_SUPPORT

Description Compile time constant that has a value of 1 if the board supports the
different modules via MODULE_SUPPORT constants and 0 otherwise. You
are not required to use this constant.

Currently, all devices support this module.

Example #if (BOARD_SUPPORT)
 /* do DIP operations */
#endif

BOARD API Reference PRELIMINARY

 3-4 PRELIMINARY

Writes value to specified memory-mapped registerBOARD_writeReg

Function void BOARD_writeReg(
 BOARD_Reg boardRegister,
 Uint32 val
);

Arguments boardRegister Register enumeration

6711 DSK
� BOARD_REG_IOPORT

val Value to be written to specified register.

Return Value none

Description Writes the value to the specified memory-mapped register.

Example BOARD_writeReg(BOARD_REG_IOPORT, 0x00000000);

4-1

������������
	

This chapter provides a description of the BSL API module and includes a
reference section showing the single API function within this module.

Topic Page

4.1 BSL API Module Description 4-2.

4.2 BSL API Reference 4-3.

Chapter 4

PRELIMINARY

PRELIMINARY

BSL API Module Description PRELIMINARY

 4-2 PRELIMINARY

4.1 BSL API Module Description

The BSL module serves to initialize the API modules supported by the
board.The following unique function has to be called before using the API func-
tions:

BSL_init ()

Table 4–1. BSL API Function

Syntax Type Description Page

BSL_init F Initializes the BSL library 4-3

Note: F = Function; C = Constant; S = Structure; T = Typedef

BSL API ReferencePRELIMINARY

4-3BSL API ModulePRELIMINARY

4.2 BSL API Reference

Initializes all programmable modules on boardBSL_init

Function void BSL_init();

Arguments none

Return Value none

Description This function initializes all of the programmable modules on the board.

6711 DSK
� AD535 Codec
� BOARD module
� DIP switch
� FLASH ROM
� User LEDs

Example BSL_init();

PRELIMINARY

 4-4 PRELIMINARY

5-1

���������	�
��

This chapter provides a description of the DIP API module, lists the individual
APIs within the module, and includes a reference section showing the single
API function and constant within this module.

Topic Page

5.1 DIP API Module Description 5-2.

5.2 DIP API Reference 5-3.

Chapter 5

PRELIMINARY

PRELIMINARY

DIP API Module Description PRELIMINARY

 5-2 PRELIMINARY

5.1 DIP API Module Description

This module has the following single API for reading DIP switch positions:

DIP_get(dip#) returns a boolean value {0,1}.

Table 5–1. DIP API Summary

Syntax Type Description Page

DIP_get F Reads the status of the DIP switches 5-3

DIP_SUPPORT C A compile time constant whose value is 1 if the board
supports the DIP module

5-3

Note: F = Function; C = Constant; S = Structure; T = Typedef

DIP API ReferencePRELIMINARY

5-3DIP API ModulePRELIMINARY

5.2 DIP API Reference

Returns current value of specified DIP switchDIP_get

Function Uint32 DIP_get(
 Uint32 dipNum
);

Arguments dipNum Specifies which DIP switch to be read, can be one of
the following:
� DIP_1
� DIP_2
� DIP_3
� …

Return Value Uint32 Current value of the specified DIP switch.
� 0 = DIP switch position is off.
� 1 = DIP switch position is on.

Description Returns the current value of the specified DIP switch.

6711 DSK
� DIP_1 = USER_SW1
� DIP_2 = USER_SW2
� DIP_3 = USER_SW3

Example Uint32 val;
val = DIP_get(DIP_1);

Compile time constantDIP_SUPPORT

Constant DIP_SUPPORT

Description Compile time constant that has a value of 1 if the board supports the DIP
module and 0 otherwise. You are not required to use this constant.

Currently, all devices support this module.

Example #if (DIP_SUPPORT)
 /* do DIP operations */
#endif

PRELIMINARY

 5-4 PRELIMINARY

6-1

������������	�

This chapter provides a description of the FLASH API module, lists the individ-
ual APIs within the module, and includes a reference section showing the API
functions and constants that are applicable to this module.

Topic Page

6.1 FLASH API Module Description 6-2.

6.2 FLASH API Reference 6-3.

Chapter 6

PRELIMINARY

PRELIMINARY

FLASH API Module Description PRELIMINARY

 6-2 PRELIMINARY

6.1 FLASH API Module Description

The FLASH module allows access to on-board flash and executes data
memory manipulation by using the following three functions:

FLASH_read(), FLASH_write() and FLASH_erase()

For the 6711 DSK, the 128KB FLASH is split into 128 bytes per page.

Table 6–1. FLASH API Summary

Syntax Type Description Page

FLASH_checksum F Returns the check sum 6-3

FLASH_erase F Erases the specific segment of the flash and/or erases
the full flash

6-4

FLASH_read F Reads the Flash data and copies it to a specified
destination buffer

6-5

FLASH_SUPPORT C A compile time constant whose value is 1 if the board
supports the FLASH module

6-6

FLASH_write F Writes to Flash data from a specified source buffer 6-6

Note: F = Function; C = Constant; S = Structure; T = Typedef

FLASH API ReferencePRELIMINARY

6-3FLASH API ModulePRELIMINARY

6.2 FLASH API Reference

Returns checksum of specified Flash dataFLASH_checksum

Function Uint32 FLASH_checksum(
 Uint32 locator,
 Uint32 length
);

Arguments locator Addressing and page information for location in Flash
memory.

6711 DSK
� FLASH_START_ADDR
� FLASH_PAGE_ADDR(x) :(x)– page number
� 32-bit FLASH address

length Length in bytes of data to be read. This is limited by the
size of the Flash memory.

Return Value Uint32 Returns the value of the specified checksum

Description Returns the checksum of the specified Flash data. Checksum calculated
by byte by byte addition.

Note: This function does not affect unspecified segments of Flash. For
example, altering the lower half of a page of Flash memory does not
change the value of the upper half page.

6711 DSK
� locator contains 32-bit address of Flash location
�FLASH_START_ADDR is 0x9000000

� Flash address range: 0x90000000 to 0x90020000
� FLASH_PAGE_SIZE = 0x80: 128 bytes
� Page number range x: 0 to 1023

�FLASH_PAGE_ADDR(x) = FLASH_START_ADDR +
x*FLASH_PAGE_SIZE)

Note: On 5x boards, 16-bit addressing is used and page information is
included in the upper half-word of the address argument.

Example To get the checksum of page 0 and 1, use:
Uint32 startAddr = FLASH_PAGE_ADDR(0);
Uint32 length = FLASH_PAGE_SIZE * 2;
Uint32 checksum;
checksum = FLASH_checksum(startAddr,length);

FLASH API Reference PRELIMINARY

 6-4 PRELIMINARY

Erases specified segment of Flash memoryFLASH_erase

Function void FLASH_erase(
 Uint32 locator,
 Uint32 length
);

Arguments locator Addressing and page information for location in Flash
memory.

6711 DSK
� FLASH_START_ADDR
� FLASH_PAGE_ADDR(x) :(x)– page number
� 32-bit Flash address

length Length in bytes of data to be erased. This is limited by
the size of the Flash memory.

6711 DSK
� length in bytes
� FLASH_ERASE_ALL – erase entire FLASH

Return Value none

Description Erases the specified segment of Flash memory.

Note: This function does not affect unspecified segments of Flash. For
example, altering the lower half of a page of Flash memory does not
change the value of the upper half page.

6711 DSK
� locator contains 32-bit address of Flash location
�FLASH_START_ADDR is 0x9000000

� Flash address range: 0x90000000 to 0x90020000
� FLASH_PAGE_SIZE = 0x80: 128 bytes
� Page number range: 0 to 1023

�FLASH_PAGE_ADDR(x) = FLASH_START_ADDR +
x*FLASH_PAGE_SIZE)

Note: On 5x boards, 16-bit addressing is used and page information is
included in the upper half-word of the address argument.

Example To erase page # 0 and # 1 in the Flash:
FLASH_erase(FLASH_PAGE_ADDR(0), FLASH_PAGE_SIZE*2);

To erase the entire FLASH:
FLASH_erase(0, FLASH_ERASE_ALL);

Note: When erasing the entire Flash memory, the locator argument
becomes a dummy parameter.

FLASH API ReferencePRELIMINARY

6-5FLASH API ModulePRELIMINARY

Reads data from FLASH addressFLASH_read

Function void FLASH_read(
 Uint32 locator,
 Uint32 dst,
 Uint32 length
);

Arguments locator Addressing and page information for location in Flash
memory.

6711 DSK
� FLASH_START_ADDR
� FLASH_PAGE_ADDR(x) :(x)– page number
� 32-bit FLASH address

dst Destination address

length Length in bytes of data to be read. This is limited by the
size of the Flash memory.

Return Value none

Description Reads data from the FLASH address (locator) and copies it to a
destination address (dst). This function is limited only by the length of the
FLASH memory.

Note: This function does not affect unspecified segments of Flash. For
example, altering the lower half of a page of Flash memory does not
change the value of the upper half page.

6711 DSK

� locator contains 32-bit address of Flash location
�FLASH_START_ADDR is 0x9000000

� Flash address range: 0x90000000 to 0x90020000
� FLASH_PAGE_SIZE = 0x80: 128 bytes
� Page number range: 0 to 1023

�FLASH_PAGE_ADDR(x) = FLASH_START_ADDR +
x*FLASH_PAGE_SIZE)

Example To read from pages 0 and 1 to readBuffer:
char readBuffer[FLASH_PAGE_SIZE*2];
FLASH_read(FLASH_PAGE_ADDR(0),
 (Uint32)readBuffer,
 FLASH_PAGE_SIZE * 2);

FLASH API Reference PRELIMINARY

 6-6 PRELIMINARY

Compile time constantFLASH_SUPPORT

Constant FLASH_SUPPORT

Description Compile time constant that has a value of 1 if the board supports the
FLASH module and 0 otherwise. You are not required to use this constant.

Currently, all devices support this module.

Example #if (FLASH_SUPPORT)
 /* do FLASH operations */
#endif

Writes data to Flash addressFLASH_write

Function int FLASH_write(
 Uint32 src,
 Uint32 locator,
 Uint32 length
);

Arguments src Source address

locator Addressing and page information for location in Flash
memory.

6711 DSK
� FLASH_START_ADDR
� FLASH_PAGE_ADDR(x) :(x)– page number
� 32-bit FLASH address

length Length in bytes of data to be written. This is limited by
the size of the Flash memory.

Return Value none

FLASH API ReferencePRELIMINARY

6-7FLASH API ModulePRELIMINARY

Description Writes data to the Flash address (locator) from a source address (src).
This function is limited by the page length of the Flash memory.

Note: This function does not affect unspecified segments of Flash. For
example, altering the lower half of a page of Flash memory does not
change the value of the upper half page.

6711 DSK
� Locator contains 32-bit address of Flash location
�FLASH_START_ADDR is 0x9000000

� Flash address range: 0x90000000 to 0x90020000
� FLASH_PAGE_SIZE = 0x80: 128 bytes
� Page number range: 0 to 1023
�FLASH_PAGE_ADDR(x) = FLASH_START_ADDR +
x*FLASH_PAGE_SIZE)

� If the source address begins in the middle of a page, the write will
invalidate all other data on the page.

Example To write from writeBuffer to pages 1 and 2:
char writeBuffer[FLASH_PAGE_SIZE*2];
FLASH_write((Uint32)writeBuffer,
 FLASH_PAGE_ADDR(1),
 FLASH_PAGE_SIZE * 2);

PRELIMINARY

 6-8 PRELIMINARY

7-1

������������
	

This chapter provides a description of the LED API module, lists the individual
APIs within the module, and includes a reference section showing the API
functions and constants that are applicable to this module.

Topic Page

7.1 LED API Module Description 7-2.

7.2 LED API Reference 7-3.

Chapter 7

PRELIMINARY

PRELIMINARY

LED API Module Description PRELIMINARY

 7-2 PRELIMINARY

7.1 LED API Module Description

This module has a simple API for configuring on-board LED outputs. Three
states can be set by the following functions:

� LED_on(led#)

� LED_off(led#)

� LED_toggle(led#)

Table 7–1. LED API Summary

Syntax Type Description Page

LED_off F Turns off the specified LED NO TAG

LED_on F Turns on the specified LED NO TAG

LED_SUPPORT C A compile time constant whose value is 1 if the board
supports the LED module

NO TAG

LED_toggle F Toggles the specified LED NO TAG

Note: F = Function; C = Constant; S = Structure; T = Typedef

LED API ReferencePRELIMINARY

7-3LED API ModulePRELIMINARY

7.2 LED API Reference

Turns off specified LEDLED_off

Function void LED_off(
 Uint32 LedNum
);

Arguments LedNum Specifies which LED to be turned off. Can be one of
the following:
� LED_1
� LED_2
� LED_3
� …

Return Value none

Description Turns off the specified LED.

6711 DSK
� LED_1 = USER_LED1
� LED_2 = USER_LED2
� LED_3 = USER_LED3
� LED_ALL = all user LEDs

Example If you want to turn off LED # 1 use:
LED_off(LED_1);

Turns on specified LEDLED_on

Function void LED_on(
 Uint32 LedNum
);

Arguments LedNum Specifies which LED to be turned on. Can be one of
the following:
� LED_1
� LED_2
� LED_3
� …

Return Value none

LED API Reference PRELIMINARY

 7-4 PRELIMINARY

Description Turns on the specified LED.

6711 DSK
� LED_1 = USER_LED1
� LED_2 = USER_LED2
� LED_3 = USER_LED3
� LED_ALL = all user LEDs

Example If you want to turn on LED # 1 use:
LED_on(LED_1);

Compile time constantLED_SUPPORT

Constant LED_SUPPORT

Description Compile time constant that has a value of 1 if the board supports the LED
module and 0 otherwise. You are not required to use this constant.

Currently, all devices support this module.

Example #if (LED_SUPPORT)
 /* do LED operations */
#endif

Toggles specified LEDLED_toggle

Function void LED_toggle(
 Uint32 LedNum
);

Arguments LedNum Specifies which LED to be toggled, can be one of the
following:
� LED_1
� LED_2
� LED_3
� …

Return Value none

Description Toggles the specified LED.

6711 DSK
� LED_1 = USER_LED1
� LED_2 = USER_LED2
� LED_3 = USER_LED3
� LED_ALL = all user LEDs

Example If you want to toggle LED # 1 use:
LED_toggle(LED_1);

A-1

Appendix A

��������

A

AD535: The audio codec API module. Currently supported by the
6711 DSK.

address: The location of program code or data stored; an individually
accessible memory location.

A-law companding: See compress and expand (compand).

API: See application programming interface.

API module: A set of API functions designed for a specific purpose.

application programming interface (API): Used for proprietary applica-
tion programs to interact with communications software or to conform to
protocols from another vendor’s product.

assembler: A software program that creates a machine language program
from a source file that contains assembly language instructions, direc-
tives, and macros. The assembler substitutes absolute operation codes
for symbolic operation codes and absolute or relocatable addresses for
symbolic addresses.

assert: To make a digital logic device pin active. If the pin is active low, then
a low voltage on the pin asserts it. If the pin is active high, then a high
voltage asserts it.

B

bit: A binary digit, either a 0 or 1.

big endian: An addressing protocol in which bytes are numbered from left
to right within a word. More significant bytes in a word have lower num-
bered addresses. Endian ordering is specific to hardware and is deter-
mined at reset. See also little endian.

Appendix A

PRELIMINARY

PRELIMINARY

PRELIMINARY

PRELIMINARY

PRELIMINARY

 A-2 PRELIMINARY

block: The three least significant bits of the program address. These corre-
spond to the address within a fetch packet of the first instruction being
addressed.

BOARD: The BOARD-specific API Module.

board support library (BSL): The BSL is a set of application programming
interfaces (APIs) consisting of target side DSP code used to configure
and control board level peripherals.

boot: The process of loading a program into program memory.

boot mode: The method of loading a program into program memory. The
’C6x DSP supports booting from external ROM or the host port interface
(HPI).

BSL: See board support library.

byte: A sequence of eight adjacent bits operated upon as a unit.

C
cache: A fast storage buffer in the central processing unit of a computer.

cache module: CACHE is an API module containing a set of functions for
managing data and program cache.

cache controller: System component that coordinates program accesses
between CPU program fetch mechanism, cache, and external memory.

CCS: Code Composer Studio.

central processing unit (CPU): The portion of the processor involved in
arithmetic, shifting, and Boolean logic operations, as well as the genera-
tion of data- and program-memory addresses. The CPU includes the
central arithmetic logic unit (CALU), the multiplier, and the auxiliary regis-
ter arithmetic unit (ARAU).

CHIP: See CHIP module.

CHIP module: The CHIP module is an API module where chip-specific and
device-related code resides. CHIP has some API functions for obtaining
device endianess, memory map mode if applicable, CPU and REV IDs,
and clock speed.

chip support library (CSL): The CSL is a set of application programming
interfaces (APIs) consisting of target side DSP code used to configure
and control all on-chip peripherals.

PRELIMINARY

A-3GlossaryPRELIMINARY

clock cycle: A periodic or sequence of events based on the input from the
external clock.

clock modes: Options used by the clock generator to change the internal
CPU clock frequency to a fraction or multiple of the frequency of the input
clock signal.

code: A set of instructions written to perform a task; a computer program or
part of a program.

codec: Coder-decoder, or compression/decompression. A device that
codes in one direction of transmission and decodes in another direction
of transmission.

coder-decoder or compression/decompression (codec): A device that
codes in one direction of transmission and decodes in another direction
of transmission.

compiler: A computer program that translates programs in a high-level lan-
guage into their assembly-language equivalents.

compress and expand (compand): A quantization scheme for audio sig-
nals in which the input signal is compressed and then, after processing,
is reconstructed at the output by expansion. There are two distinct com-
panding schemes: A-law (used in Europe) and µ-law (used in the United
States).

constant: A fixed or invariable value or data item that can be used as an op-
erand.

control register: A register that contains bit fields that define the way a de-
vice operates.

control register file: A set of control registers.

CSL: See chip support library.

CSL module: The CSL module is the top-level CSL API module.It interfaces
to all other modules and its main purpose is to initialize the CSL library.

D
DAT: Data; see DAT module.

DAT module: The DAT is an API module that is used to move data around
by means of DMA/EDMA hardware. This module serves as a level of ab-
straction that works the same for devices that have the DMA or EDMA
peripheral.

PRELIMINARY

 A-4 PRELIMINARY

device ID: Configuration register that identifies each peripheral component
interconnect (PCI).

digital signal processor (DSP): A semiconductor that turns analog sig-
nals—such as sound or light—into digital signals, which are discrete or
discontinuous electrical impulses, so that they can be manipulated.

DIP: The DIP Switches API Module.

direct memory access (DMA): A mechanism whereby a device other than
the host processor contends for and receives mastery of the memory bus
so that data transfers can take place independent of the host.

DMA : See direct memory access.

DMA module: DMA is an API module that currently has two architectures
used on ’C6x devices: DMA and EDMA (enhanced DMA). Devices such
as the ’6201 have the DMA peripheral, whereas the ’6211 has the EDMA
peripheral.

DMA source: The module where the DMA data originates. DMA data is read
from the DMA source.

DMA transfer: The process of transferring data from one part of memory to
another. Each DMA transfer consists of a read bus cycle (source to DMA
holding register) and a write bus cycle (DMA holding register to destina-
tion).

DSK: Digital signal processor (DSP) starter kit. Tools and documentation
provided to new DSP users to enable rapid use of the product.

E

EDMA: Enhanced direct memory access; see EDMA module.

EDMA module: EDMA is an API module that currently has two architectures
used on ’C6x devices: DMA and EDMA (enhanced DMA). Devices such
as the ’6201 have the DMA peripheral, whereas the ’6211 has the EDMA
peripheral.

EMIF: See external memory interface; see also EMIF module.

EMIF module: EMIF is an API module that is used for configuring the EMIF
registers.

evaluation module (EVM): Board and software tools that allow the user to
evaluate a specific device.

PRELIMINARY

A-5GlossaryPRELIMINARY

external interrupt: A hardware interrupt triggered by a specific value on a
pin.

external memory interface (EMIF): Microprocessor hardware that is used
to read to and write from off-chip memory.

F

fetch packet: A contiguous 8-word series of instructions fetched by the CPU
and aligned on an 8-word boundary.

flag: A binary status indicator whose state indicates whether a particular
condition has occurred or is in effect.

FLASH: The FLASH ROM API Module.

frame: An 8-word space in the cache RAMs. Each fetch packet in the cache
resides in only one frame. A cache update loads a frame with the re-
quested fetch packet. The cache contains 512 frames.

G

global interrupt enable bit (GIE): A bit in the control status register (CSR)
that is used to enable or disable maskable interrupts.

H

host: A device to which other devices (peripherals) are connected and that
generally controls those devices.

host port interface (HPI): A parallel interface that the CPU uses to commu-
nicate with a host processor.

HPI: See host port interface; see also HPI module.

HPI module: HPI is an API module used for configuring the HPI registers.
Functions are provided for reading HPI status bits and setting interrupt
events.

I

index: A relative offset in the program address that specifies which of the
512 frames in the cache into which the current access is mapped.

PRELIMINARY

 A-6 PRELIMINARY

indirect addressing: An addressing mode in which an address points to
another pointer rather than to the actual data; this mode is prohibited in
RISC architecture.

instruction fetch packet: A group of up to eight instructions held in memory
for execution by the CPU.

internal interrupt: A hardware interrupt caused by an on-chip peripheral.

internal peripherals: Devices connected to and controlled by a host device.
The C6x internal peripherals include the direct memory access (DMA)
controller, multichannel buffered serial ports (McBSPs), host port inter-
face (HPI), external memory-interface (EMIF), and runtime support tim-
ers.

interrupt: A signal sent by hardware or software to a processor requesting
attention. An interrupt tells the processor to suspend its current opera-
tion, save the current task status, and perform a particular set of instruc-
tions. Interrupts communicate with the operating system and prioritize
tasks to be performed.

interrupt service fetch packet (ISFP): A fetch packet used to service inter-
rupts. If eight instructions are insufficient, the user must branch out of this
block for additional interrupt service. If the delay slots of the branch do
not reside within the ISFP, execution continues from execute packets in
the next fetch packet (the next ISFP).

interrupt service routine (ISR): A module of code that is executed in re-
sponse to a hardware or software interrupt.

interrupt service table (IST) A table containing a corresponding entry for
each of the 16 physical interrupts. Each entry is a single-fetch packet and
has a label associated with it.

IRQ: Interrupt request; see IRQ module.

IRQ module: IRQ is an API module that manages CPU interrupts.

IST: See interrupt service table.

L
least significant bit (LSB): The lowest-order bit in a word.

LED: The LED API Module.

linker: A software tool that combines object files to form an object module,
which can be loaded into memory and executed.

PRELIMINARY

A-7GlossaryPRELIMINARY

little endian: An addressing protocol in which bytes are numbered from right
to left within a word. More significant bytes in a word have higher-num-
bered addresses. Endian ordering is specific to hardware and is deter-
mined at reset. See also big endian.

M
µ-law companding: See compress and expand (compand).

maskable interrupt : A hardware interrupt that can be enabled or disabled
through software.

MCBSP: See multichannel buffered serial port; see also MCBSP module.

MCBSP module: MCBSP is an API module that contains a set of functions
for configuring the McBSP registers.

memory map: A graphical representation of a computer system’s memory,
showing the locations of program space, data space, reserved space,
and other memory-resident elements.

memory-mapped register: An on-chip register mapped to an address in
memory. Some memory-mapped registers are mapped to data memory,
and some are mapped to input/output memory.

most significant bit (MSB): The highest order bit in a word.

multichannel buffered serial port (McBSP): An on-chip full-duplex circuit
that provides direct serial communication through several channels to
external serial devices.

multiplexer: A device for selecting one of several available signals.

N
nonmaskable interrupt (NMI): An interrupt that can be neither masked nor

disabled.

O
object file: A file that has been assembled or linked and contains machine

language object code.

off chip: A state of being external to a device.

on chip: A state of being internal to a device.

PRELIMINARY

 A-8 PRELIMINARY

P
peripheral: A device connected to and usually controlled by a host device.

program cache: A fast memory cache for storing program instructions al-
lowing for quick execution.

program memory: Memory accessed through the ‘C6x’s program fetch in-
terface.

PWR: Power; see PWR module.

PWR module: PWR is an API module that is used to configure the power-
down control registers, if applicable, and to invoke various power-down
modes.

R
random-access memory (RAM): A type of memory device in which the

individual locations can be accessed in any order.

register: A small area of high speed memory located within a processor or
electronic device that is used for temporarily storing data or instructions.
Each register is given a name, contains a few bytes of information, and
is referenced by programs.

reduced-instruction-set computer (RISC): A computer whose instruction
set and related decode mechanism are much simpler than those of micro-
programmed complex instruction set computers. The result is a higher
instruction throughput and a faster real-time interrupt service response
from a smaller, cost-effective chip.

reset: A means of bringing the CPU to a known state by setting the registers
and control bits to predetermined values and signaling execution to start
at a specified address.

RTOS Real-time operating system.

S
structure: A collection of one or more variables grouped together under a

single name.

synchronous-burst static random-access memory (SBSRAM): RAM
whose contents does not have to be refreshed periodically. Transfer of
data is at a fixed rate relative to the clock speed of the device, but the
speed is increased.

PRELIMINARY

A-9GlossaryPRELIMINARY

synchronous dynamic random-access memory (SDRAM): RAM whose
contents is refreshed periodically so the data is not lost. Transfer of data
is at a fixed rate relative to the clock speed of the device.

syntax: The grammatical and structural rules of a language. All higher-level
programming languages possess a formal syntax.

system software: The blanketing term used to denote collectively the chip
support libraries and board support libraries.

T

tag: The 18 most significant bits of the program address. This value corre-
sponds to the physical address of the fetch packet that is in that frame.

timer: A programmable peripheral used to generate pulses or to time
events.

TIMER module: TIMER is an API module used for configuring the timer reg-
isters.

W

word: A multiple of eight bits that is operated upon as a unit. For the ‘C6x,
a word is 32 bits in length.

PRELIMINARY

 A-10 PRELIMINARY

Index

Index-1

�����

A
A-law companding, defined, A-1

about the BSL manual, iii

AD535 API module, 2-1
API constant, 2-3

AD535_SUPPORT, 2-12
API functions

AD535_close, 2-3
AD535_config, 2-4
AD535_getMcbspHandle, 2-5
AD535_inGain, 2-7
AD535_micGain, 2-7
AD535_modifyReg, 2-8
AD535_open, 2-9
AD535_outGain, 2-10
AD535_powerDown, 2-10
AD535_read, 2-11
AD535_readReg, 2-11
AD535_reset, 2-12
AD535_write, 2-12
AD535_writeReg, 2-13

API structures
AD535_Config, 2-3
AD535_Id, 2-5

API summary table, 2-2
description, 2-2

address, defined, A-1

API, defined, A-1

API module, defined, A-1

application programming interface, defined, A-1

assembler, defined, A-1

assert, defined, A-1

B
big endian, defined, A-1

bit, defined, A-1

block, defined, A-2

BOARD API module, 3-1
API constant, 3-3

BOARD_SUPPORT, 3-3
API functions

BOARD_readReg, 3-3
BOARD_writeReg, 3-4

API summary table, 3-2
description, 3-2

board support library, defined, A-2

board support library (BSL)
6711 DSK module support, 1-4
about the BSL manual, iii
API module support, 1-3
API module support for 6711 DSK, table, 1-4
API modules, 1-3
device identification symbol, note regarding, 1-5
how the BSL benefits you, 1-2
how to use the BSL manual, iii
interdependencies, 1-3
introduction, 1-2
modules and include files, table, 1-3
notational conventions, iv
overview, 1-1
project settings, 1-5
related documents from Texas Instruments, iv

boot, defined, A-2

boot mode, defined, A-2

BSL, defined, A-2

byte, defined, A-2

Index

Index-2

C
cache, defined, A-2
cache controller, defined, A-2
CACHE module, defined, A-2
CCS, defined, A-2
central processing unit (CPU), defined, A-2
CHIP, defined, A-2
CHIP module, defined, A-2
chip support library, defined, A-2
clock cycle, defined, A-3
clock modes, defined, A-3
code, defined, A-3
coder-decoder, defined, A-3
compiler, defined, A-3
compress and expand (compand), defined, A-3
control register, defined, A-3
control register file, defined, A-3
CSL, defined, A-3
CSL module, defined, A-3

D
DAT, defined, A-3
DAT module, defined, A-3
device ID, defined, A-4
device identification symbol, note regarding, 1-5
digital signal processor (DSP), defined, A-4
DIP API module, 5-1

API constant, 5-3
DIP_SUPPORT, 5-3

API function, DIP_get, 5-3
API summary table, 5-2
description, 5-2

direct memory access (DMA)
defined, A-4
source, defined, A-4
transfer, defined, A-4

DMA, defined, A-4
DMA module, defined, A-4

E
EDMA, defined, A-4
EDMA module, defined, A-4

EMIF, defined, A-4
EMIF module, defined, A-4
evaluation module, defined, A-4
external interrupt, defined, A-5
external memory interface (EMIF), defined, A-5

F
fetch packet, defined, A-5
flag, defined, A-5
FLASH API module, 6-1

API constant, 6-3
FLASH_SUPPORT, 6-6

API functions
FLASH_checksum, 6-3
FLASH_erase, 6-4
FLASH_read, 6-5
FLASH_write, 6-6

description, 6-2
API summary table, 6-2

frame, defined, A-5

G
GIE bit, defined, A-5

H
host, defined, A-5
host port interface (HPI), defined, A-5
how to use the BSL manual, iii
HPI, defined, A-5
HPI module, defined, A-5

I
index, defined, A-5
indirect addressing, defined, A-6
instruction fetch packet, defined, A-6
internal interrupt, defined, A-6
internal peripherals, defined, A-6
interrupt, defined, A-6
interrupt service fetch packet (ISFP), defined, A-6
interrupt service routine (ISR), defined, A-6
interrupt service table (IST), defined, A-6
IRQ, defined, A-6

Index

Index-3

IRQ module, defined, A-6
IST, defined, A-6

L
least significant bit (LSB), defined, A-6
LED API module, 7-1

API constant, 7-3
LED_SUPPORT, 7-4

API functions
LED_off, 7-3
LED_on, 7-3
LED_toggle, 7-4

API summary table, 7-2
description, 7-2

linker, defined, A-6
little endian, defined, A-7

M
µ-law companding, defined, A-7
maskable interrupt, defined, A-7
MCBSP, defined, A-7
MCBSP module, defined, A-7
memory map, defined, A-7
memory-mapped register, defined, A-7
most significant bit (MSB), defined, A-7
multichannel buffered serial port (McBSP), defined,

A-7
multiplexer, defined, A-7

N
nonmaskable interrupt (NMI), defined, A-7
notational conventions, iv

O
object file, defined, A-7
off chip, defined, A-7

on chip, defined, A-7

P
peripheral, defined, A-8
program cache, defined, A-8
program memory, defined, A-8
PWR, defined, A-8
PWR module, defined, A-8

R
random-access memory (RAM), defined, A-8
reduced-instruction-set computer (RISC), defined,

A-8
register, defined, A-8
related documents from Texas Instruments, iv
reset, defined, A-8
RTOS, defined, A-8

S
STDINC module, defined, A-8
synchronous dynamic random-access memory

(SDRAM), defined, A-9
synchronous-burst static random-access memory

(SBSRAM), defined, A-8
syntax, defined, A-9
system software, defined, A-9

T
tag, defined, A-9
timer, defined, A-9
TIMER module, defined, A-9

W
word, defined, A-9

Index-4

	Cover
	1. BSL Overview
	2. AD535 Module
	Lab 4, step 9: AD535_open
	Lab 4, step 9: AD535_reset
	Lab 4, step 9: AD535_config

	3. BOARD Module
	4. BSL Module
	5. DIP Module
	6. FLASH Module
	7. LED Module
	Appendix
	A. Glossary
	B. Index

